![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sal | Structured version Visualization version GIF version |
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0sal | ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issal 46235 | . . 3 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
2 | 1 | ibi 267 | . 2 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
3 | 2 | simp1d 1142 | 1 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 SAlgcsalg 46229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-ss 3993 df-pw 4624 df-uni 4932 df-salg 46230 |
This theorem is referenced by: saluni 46246 intsal 46251 0sald 46271 ismeannd 46388 |
Copyright terms: Public domain | W3C validator |