| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sal | Structured version Visualization version GIF version | ||
| Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0sal | ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issal 46310 | . . 3 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
| 3 | 2 | simp1d 1142 | 1 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3052 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 class class class wbr 5124 ωcom 7866 ≼ cdom 8962 SAlgcsalg 46304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-ss 3948 df-pw 4582 df-uni 4889 df-salg 46305 |
| This theorem is referenced by: saluni 46321 intsal 46326 0sald 46346 ismeannd 46463 |
| Copyright terms: Public domain | W3C validator |