Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0sal | Structured version Visualization version GIF version |
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
0sal | ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issal 43745 | . . 3 ⊢ (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆)))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 (∪ 𝑆 ∖ 𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → ∪ 𝑦 ∈ 𝑆))) |
3 | 2 | simp1d 1140 | 1 ⊢ (𝑆 ∈ SAlg → ∅ ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 ∖ cdif 3880 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ωcom 7687 ≼ cdom 8689 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 df-salg 43740 |
This theorem is referenced by: saluni 43755 intsal 43759 0sald 43779 ismeannd 43895 |
Copyright terms: Public domain | W3C validator |