Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0sal Structured version   Visualization version   GIF version

Theorem 0sal 46316
Description: The empty set belongs to every sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
0sal (𝑆 ∈ SAlg → ∅ ∈ 𝑆)

Proof of Theorem 0sal
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 issal 46310 . . 3 (𝑆 ∈ SAlg → (𝑆 ∈ SAlg ↔ (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆))))
21ibi 267 . 2 (𝑆 ∈ SAlg → (∅ ∈ 𝑆 ∧ ∀𝑦𝑆 ( 𝑆𝑦) ∈ 𝑆 ∧ ∀𝑦 ∈ 𝒫 𝑆(𝑦 ≼ ω → 𝑦𝑆)))
32simp1d 1142 1 (𝑆 ∈ SAlg → ∅ ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109  wral 3052  cdif 3928  c0 4313  𝒫 cpw 4580   cuni 4888   class class class wbr 5124  ωcom 7866  cdom 8962  SAlgcsalg 46304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rab 3421  df-v 3466  df-dif 3934  df-ss 3948  df-pw 4582  df-uni 4889  df-salg 46305
This theorem is referenced by:  saluni  46321  intsal  46326  0sald  46346  ismeannd  46463
  Copyright terms: Public domain W3C validator