| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgencld | Structured version Visualization version GIF version | ||
| Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salgencld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| salgencld.2 | ⊢ 𝑆 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| salgencld | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgencld.2 | . 2 ⊢ 𝑆 = (SalGen‘𝑋) | |
| 2 | salgencld.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | salgencl 46435 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
| 5 | 1, 4 | eqeltrid 2835 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 SAlgcsalg 46411 SalGencsalgen 46415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6443 df-fun 6489 df-fv 6495 df-salg 46412 df-salgen 46416 |
| This theorem is referenced by: bor1sal 46458 cnfsmf 46843 incsmf 46845 bormflebmf 46856 decsmf 46870 smf2id 46904 smfco 46905 |
| Copyright terms: Public domain | W3C validator |