Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencld Structured version   Visualization version   GIF version

Theorem salgencld 46364
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salgencld.1 (𝜑𝑋𝑉)
salgencld.2 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
salgencld (𝜑𝑆 ∈ SAlg)

Proof of Theorem salgencld
StepHypRef Expression
1 salgencld.2 . 2 𝑆 = (SalGen‘𝑋)
2 salgencld.1 . . 3 (𝜑𝑋𝑉)
3 salgencl 46347 . . 3 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
42, 3syl 17 . 2 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
51, 4eqeltrid 2845 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  SAlgcsalg 46323  SalGencsalgen 46327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-salg 46324  df-salgen 46328
This theorem is referenced by:  bor1sal  46370  cnfsmf  46755  incsmf  46757  bormflebmf  46768  decsmf  46782  smf2id  46816  smfco  46817
  Copyright terms: Public domain W3C validator