| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgencld | Structured version Visualization version GIF version | ||
| Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| salgencld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| salgencld.2 | ⊢ 𝑆 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| salgencld | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgencld.2 | . 2 ⊢ 𝑆 = (SalGen‘𝑋) | |
| 2 | salgencld.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | salgencl 46309 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
| 5 | 1, 4 | eqeltrid 2838 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 SAlgcsalg 46285 SalGencsalgen 46289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6483 df-fun 6532 df-fv 6538 df-salg 46286 df-salgen 46290 |
| This theorem is referenced by: bor1sal 46332 cnfsmf 46717 incsmf 46719 bormflebmf 46730 decsmf 46744 smf2id 46778 smfco 46779 |
| Copyright terms: Public domain | W3C validator |