![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgencld | Structured version Visualization version GIF version |
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
salgencld.1 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
salgencld.2 | ⊢ 𝑆 = (SalGen‘𝑋) |
Ref | Expression |
---|---|
salgencld | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salgencld.2 | . 2 ⊢ 𝑆 = (SalGen‘𝑋) | |
2 | salgencld.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | salgencl 46287 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) ∈ SAlg) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (SalGen‘𝑋) ∈ SAlg) |
5 | 1, 4 | eqeltrid 2842 | 1 ⊢ (𝜑 → 𝑆 ∈ SAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 SAlgcsalg 46263 SalGencsalgen 46267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-salg 46264 df-salgen 46268 |
This theorem is referenced by: bor1sal 46310 cnfsmf 46695 incsmf 46697 bormflebmf 46708 decsmf 46722 smf2id 46756 smfco 46757 |
Copyright terms: Public domain | W3C validator |