Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgencld Structured version   Visualization version   GIF version

Theorem salgencld 46326
Description: SalGen actually generates a sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
salgencld.1 (𝜑𝑋𝑉)
salgencld.2 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
salgencld (𝜑𝑆 ∈ SAlg)

Proof of Theorem salgencld
StepHypRef Expression
1 salgencld.2 . 2 𝑆 = (SalGen‘𝑋)
2 salgencld.1 . . 3 (𝜑𝑋𝑉)
3 salgencl 46309 . . 3 (𝑋𝑉 → (SalGen‘𝑋) ∈ SAlg)
42, 3syl 17 . 2 (𝜑 → (SalGen‘𝑋) ∈ SAlg)
51, 4eqeltrid 2838 1 (𝜑𝑆 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6530  SAlgcsalg 46285  SalGencsalgen 46289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6483  df-fun 6532  df-fv 6538  df-salg 46286  df-salgen 46290
This theorem is referenced by:  bor1sal  46332  cnfsmf  46717  incsmf  46719  bormflebmf  46730  decsmf  46744  smf2id  46778  smfco  46779
  Copyright terms: Public domain W3C validator