Step | Hyp | Ref
| Expression |
1 | | breq2 5074 |
. . . . . 6
⊢ (𝐴 = +∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < +∞)) |
2 | 1 | rabbidv 3404 |
. . . . 5
⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞}) |
3 | 2 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞}) |
4 | | smfpimltxr.x |
. . . . . 6
⊢
Ⅎ𝑥𝐹 |
5 | | smfpimltxr.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
6 | | smfpimltxr.s |
. . . . . . . . 9
⊢ (𝜑 → 𝑆 ∈ SAlg) |
7 | | smfpimltxr.d |
. . . . . . . . 9
⊢ 𝐷 = dom 𝐹 |
8 | 4, 6, 7 | issmff 44157 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
9 | 5, 8 | mpbid 231 |
. . . . . . 7
⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
10 | 9 | simp2d 1141 |
. . . . . 6
⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
11 | 4, 10 | pimltpnf2 44137 |
. . . . 5
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞} = 𝐷) |
12 | 11 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞} = 𝐷) |
13 | | eqidd 2739 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = +∞) → 𝐷 = 𝐷) |
14 | 3, 12, 13 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = 𝐷) |
15 | 9 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
16 | 6, 15 | restuni4 42559 |
. . . . . 6
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷) =
𝐷) |
17 | 16 | eqcomd 2744 |
. . . . 5
⊢ (𝜑 → 𝐷 = ∪ (𝑆 ↾t 𝐷)) |
18 | 5 | dmexd 7726 |
. . . . . . . 8
⊢ (𝜑 → dom 𝐹 ∈ V) |
19 | 7, 18 | eqeltrid 2843 |
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈ V) |
20 | | eqid 2738 |
. . . . . . 7
⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) |
21 | 6, 19, 20 | subsalsal 43788 |
. . . . . 6
⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
22 | 21 | salunid 43782 |
. . . . 5
⊢ (𝜑 → ∪ (𝑆
↾t 𝐷)
∈ (𝑆
↾t 𝐷)) |
23 | 17, 22 | eqeltrd 2839 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
24 | 23 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = +∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
25 | 14, 24 | eqeltrd 2839 |
. 2
⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
26 | | neqne 2950 |
. . . 4
⊢ (¬
𝐴 = +∞ → 𝐴 ≠ +∞) |
27 | 26 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞) |
28 | | breq2 5074 |
. . . . . . . . 9
⊢ (𝐴 = -∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < -∞)) |
29 | 28 | rabbidv 3404 |
. . . . . . . 8
⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
30 | 29 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
31 | 10 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐹:𝐷⟶ℝ) |
32 | 4, 31 | pimltmnf2 44125 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞} = ∅) |
33 | 30, 32 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = ∅) |
34 | 21 | 0sald 43779 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
35 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 = -∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
36 | 33, 35 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
37 | 36 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
38 | | simpll 763 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑) |
39 | | smfpimltxr.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈
ℝ*) |
41 | | neqne 2950 |
. . . . . . 7
⊢ (¬
𝐴 = -∞ → 𝐴 ≠ -∞) |
42 | 41 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
43 | | simplr 765 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞) |
44 | 40, 42, 43 | xrred 42794 |
. . . . 5
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈
ℝ) |
45 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
46 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
47 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
48 | 4, 45, 46, 7, 47 | smfpreimaltf 44159 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
49 | 38, 44, 48 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
50 | 37, 49 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
51 | 27, 50 | syldan 590 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
52 | 25, 51 | pm2.61dan 809 |
1
⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |