| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxr | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimltxr.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimltxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimltxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimltxr.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimltxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimltxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5123 | . . . . 5 ⊢ (𝐴 = +∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < +∞)) | |
| 2 | 1 | rabbidv 3423 | . . . 4 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞}) |
| 3 | smfpimltxr.x | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | smfpimltxr.d | . . . . . 6 ⊢ 𝐷 = dom 𝐹 | |
| 5 | 3 | nfdm 5931 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
| 6 | 4, 5 | nfcxfr 2896 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
| 7 | smfpimltxr.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | smfpimltxr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 9 | 7, 8, 4 | smff 46761 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 10 | 3, 6, 9 | pimltpnf2f 46741 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞} = 𝐷) |
| 11 | 2, 10 | sylan9eqr 2792 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = 𝐷) |
| 12 | 7, 8, 4 | smfdmss 46762 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 13 | 7, 12 | subsaluni 46389 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 15 | 11, 14 | eqeltrd 2834 | . 2 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 16 | breq2 5123 | . . . . . . . 8 ⊢ (𝐴 = -∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < -∞)) | |
| 17 | 16 | rabbidv 3423 | . . . . . . 7 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 19 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐹:𝐷⟶ℝ) |
| 20 | 3, 6, 19 | pimltmnf2f 46726 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| 21 | 18, 20 | eqtrd 2770 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = ∅) |
| 22 | 8 | dmexd 7899 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 23 | 4, 22 | eqeltrid 2838 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 24 | eqid 2735 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 25 | 7, 23, 24 | subsalsal 46388 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 26 | 25 | 0sald 46379 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 28 | 21, 27 | eqeltrd 2834 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 29 | 28 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 30 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑) | |
| 31 | smfpimltxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*) |
| 33 | neqne 2940 | . . . . . 6 ⊢ (¬ 𝐴 = -∞ → 𝐴 ≠ -∞) | |
| 34 | 33 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
| 35 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞) | |
| 36 | 32, 34, 35 | xrred 45392 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ) |
| 37 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 38 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 39 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 40 | 3, 37, 38, 4, 39 | smfpreimaltf 46765 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 41 | 30, 36, 40 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 42 | 29, 41 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 43 | 15, 42 | pm2.61dane 3019 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ≠ wne 2932 {crab 3415 Vcvv 3459 ∅c0 4308 class class class wbr 5119 dom cdm 5654 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 +∞cpnf 11266 -∞cmnf 11267 ℝ*cxr 11268 < clt 11269 ↾t crest 17434 SAlgcsalg 46337 SMblFncsmblfn 46724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-ioo 13366 df-ico 13368 df-rest 17436 df-salg 46338 df-smblfn 46725 |
| This theorem is referenced by: smfpimltxrmptf 46787 smfpimne 46868 smfsupdmmbllem 46873 |
| Copyright terms: Public domain | W3C validator |