Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   GIF version

Theorem smfpimltxr 46703
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimltxr.x 𝑥𝐹
smfpimltxr.s (𝜑𝑆 ∈ SAlg)
smfpimltxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxr (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimltxr
StepHypRef Expression
1 breq2 5152 . . . . 5 (𝐴 = +∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < +∞))
21rabbidv 3441 . . . 4 (𝐴 = +∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
3 smfpimltxr.x . . . . 5 𝑥𝐹
4 smfpimltxr.d . . . . . 6 𝐷 = dom 𝐹
53nfdm 5965 . . . . . 6 𝑥dom 𝐹
64, 5nfcxfr 2901 . . . . 5 𝑥𝐷
7 smfpimltxr.s . . . . . 6 (𝜑𝑆 ∈ SAlg)
8 smfpimltxr.f . . . . . 6 (𝜑𝐹 ∈ (SMblFn‘𝑆))
97, 8, 4smff 46688 . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
103, 6, 9pimltpnf2f 46668 . . . 4 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
112, 10sylan9eqr 2797 . . 3 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = 𝐷)
127, 8, 4smfdmss 46689 . . . . 5 (𝜑𝐷 𝑆)
137, 12subsaluni 46316 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
1413adantr 480 . . 3 ((𝜑𝐴 = +∞) → 𝐷 ∈ (𝑆t 𝐷))
1511, 14eqeltrd 2839 . 2 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
16 breq2 5152 . . . . . . . 8 (𝐴 = -∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < -∞))
1716rabbidv 3441 . . . . . . 7 (𝐴 = -∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
1817adantl 481 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
199adantr 480 . . . . . . 7 ((𝜑𝐴 = -∞) → 𝐹:𝐷⟶ℝ)
203, 6, 19pimltmnf2f 46653 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < -∞} = ∅)
2118, 20eqtrd 2775 . . . . 5 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = ∅)
228dmexd 7926 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
234, 22eqeltrid 2843 . . . . . . . 8 (𝜑𝐷 ∈ V)
24 eqid 2735 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
257, 23, 24subsalsal 46315 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
26250sald 46306 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
2726adantr 480 . . . . 5 ((𝜑𝐴 = -∞) → ∅ ∈ (𝑆t 𝐷))
2821, 27eqeltrd 2839 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
2928adantlr 715 . . 3 (((𝜑𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
30 simpll 767 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
31 smfpimltxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3230, 31syl 17 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
33 neqne 2946 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
3433adantl 481 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
35 simplr 769 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞)
3632, 34, 35xrred 45315 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
377adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
388adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
39 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
403, 37, 38, 4, 39smfpreimaltf 46692 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4130, 36, 40syl2anc 584 . . 3 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4229, 41pm2.61dan 813 . 2 ((𝜑𝐴 ≠ +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4315, 42pm2.61dane 3027 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wnfc 2888  wne 2938  {crab 3433  Vcvv 3478  c0 4339   class class class wbr 5148  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  +∞cpnf 11290  -∞cmnf 11291  *cxr 11292   < clt 11293  t crest 17467  SAlgcsalg 46264  SMblFncsmblfn 46651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cc 10473  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-ioo 13388  df-ico 13390  df-rest 17469  df-salg 46265  df-smblfn 46652
This theorem is referenced by:  smfpimltxrmptf  46714  smfpimne  46795  smfsupdmmbllem  46800
  Copyright terms: Public domain W3C validator