| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxr | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimltxr.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimltxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimltxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimltxr.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimltxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimltxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5099 | . . . . 5 ⊢ (𝐴 = +∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < +∞)) | |
| 2 | 1 | rabbidv 3404 | . . . 4 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞}) |
| 3 | smfpimltxr.x | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | smfpimltxr.d | . . . . . 6 ⊢ 𝐷 = dom 𝐹 | |
| 5 | 3 | nfdm 5898 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
| 6 | 4, 5 | nfcxfr 2894 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
| 7 | smfpimltxr.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | smfpimltxr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 9 | 7, 8, 4 | smff 46844 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 10 | 3, 6, 9 | pimltpnf2f 46824 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞} = 𝐷) |
| 11 | 2, 10 | sylan9eqr 2790 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = 𝐷) |
| 12 | 7, 8, 4 | smfdmss 46845 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 13 | 7, 12 | subsaluni 46472 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 15 | 11, 14 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 16 | breq2 5099 | . . . . . . . 8 ⊢ (𝐴 = -∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < -∞)) | |
| 17 | 16 | rabbidv 3404 | . . . . . . 7 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 19 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐹:𝐷⟶ℝ) |
| 20 | 3, 6, 19 | pimltmnf2f 46809 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| 21 | 18, 20 | eqtrd 2768 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = ∅) |
| 22 | 8 | dmexd 7842 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 23 | 4, 22 | eqeltrid 2837 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 24 | eqid 2733 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 25 | 7, 23, 24 | subsalsal 46471 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 26 | 25 | 0sald 46462 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 28 | 21, 27 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 29 | 28 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 30 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑) | |
| 31 | smfpimltxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*) |
| 33 | neqne 2938 | . . . . . 6 ⊢ (¬ 𝐴 = -∞ → 𝐴 ≠ -∞) | |
| 34 | 33 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
| 35 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞) | |
| 36 | 32, 34, 35 | xrred 45477 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ) |
| 37 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 38 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 39 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 40 | 3, 37, 38, 4, 39 | smfpreimaltf 46848 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 41 | 30, 36, 40 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 42 | 29, 41 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 43 | 15, 42 | pm2.61dane 3017 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2881 ≠ wne 2930 {crab 3397 Vcvv 3438 ∅c0 4284 class class class wbr 5095 dom cdm 5621 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ℝcr 11015 +∞cpnf 11153 -∞cmnf 11154 ℝ*cxr 11155 < clt 11156 ↾t crest 17334 SAlgcsalg 46420 SMblFncsmblfn 46807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cc 10336 ax-ac2 10364 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-pm 8762 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-card 9842 df-acn 9845 df-ac 10017 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-n0 12392 df-z 12479 df-uz 12743 df-ioo 13259 df-ico 13261 df-rest 17336 df-salg 46421 df-smblfn 46808 |
| This theorem is referenced by: smfpimltxrmptf 46870 smfpimne 46951 smfsupdmmbllem 46956 |
| Copyright terms: Public domain | W3C validator |