Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   GIF version

Theorem smfpimltxr 46764
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimltxr.x 𝑥𝐹
smfpimltxr.s (𝜑𝑆 ∈ SAlg)
smfpimltxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxr (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimltxr
StepHypRef Expression
1 breq2 5093 . . . . 5 (𝐴 = +∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < +∞))
21rabbidv 3400 . . . 4 (𝐴 = +∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
3 smfpimltxr.x . . . . 5 𝑥𝐹
4 smfpimltxr.d . . . . . 6 𝐷 = dom 𝐹
53nfdm 5888 . . . . . 6 𝑥dom 𝐹
64, 5nfcxfr 2890 . . . . 5 𝑥𝐷
7 smfpimltxr.s . . . . . 6 (𝜑𝑆 ∈ SAlg)
8 smfpimltxr.f . . . . . 6 (𝜑𝐹 ∈ (SMblFn‘𝑆))
97, 8, 4smff 46749 . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
103, 6, 9pimltpnf2f 46729 . . . 4 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
112, 10sylan9eqr 2787 . . 3 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = 𝐷)
127, 8, 4smfdmss 46750 . . . . 5 (𝜑𝐷 𝑆)
137, 12subsaluni 46377 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
1413adantr 480 . . 3 ((𝜑𝐴 = +∞) → 𝐷 ∈ (𝑆t 𝐷))
1511, 14eqeltrd 2829 . 2 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
16 breq2 5093 . . . . . . . 8 (𝐴 = -∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < -∞))
1716rabbidv 3400 . . . . . . 7 (𝐴 = -∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
1817adantl 481 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
199adantr 480 . . . . . . 7 ((𝜑𝐴 = -∞) → 𝐹:𝐷⟶ℝ)
203, 6, 19pimltmnf2f 46714 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < -∞} = ∅)
2118, 20eqtrd 2765 . . . . 5 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = ∅)
228dmexd 7828 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
234, 22eqeltrid 2833 . . . . . . . 8 (𝜑𝐷 ∈ V)
24 eqid 2730 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
257, 23, 24subsalsal 46376 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
26250sald 46367 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
2726adantr 480 . . . . 5 ((𝜑𝐴 = -∞) → ∅ ∈ (𝑆t 𝐷))
2821, 27eqeltrd 2829 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
2928adantlr 715 . . 3 (((𝜑𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
30 simpll 766 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
31 smfpimltxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3230, 31syl 17 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
33 neqne 2934 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
3433adantl 481 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
35 simplr 768 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞)
3632, 34, 35xrred 45382 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
377adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
388adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
39 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
403, 37, 38, 4, 39smfpreimaltf 46753 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4130, 36, 40syl2anc 584 . . 3 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4229, 41pm2.61dan 812 . 2 ((𝜑𝐴 ≠ +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4315, 42pm2.61dane 3013 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wnfc 2877  wne 2926  {crab 3393  Vcvv 3434  c0 4281   class class class wbr 5089  dom cdm 5614  wf 6473  cfv 6477  (class class class)co 7341  cr 10997  +∞cpnf 11135  -∞cmnf 11136  *cxr 11137   < clt 11138  t crest 17316  SAlgcsalg 46325  SMblFncsmblfn 46712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-ioo 13241  df-ico 13243  df-rest 17318  df-salg 46326  df-smblfn 46713
This theorem is referenced by:  smfpimltxrmptf  46775  smfpimne  46856  smfsupdmmbllem  46861
  Copyright terms: Public domain W3C validator