Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   GIF version

Theorem smfpimltxr 46729
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimltxr.x 𝑥𝐹
smfpimltxr.s (𝜑𝑆 ∈ SAlg)
smfpimltxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxr (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimltxr
StepHypRef Expression
1 breq2 5099 . . . . 5 (𝐴 = +∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < +∞))
21rabbidv 3404 . . . 4 (𝐴 = +∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
3 smfpimltxr.x . . . . 5 𝑥𝐹
4 smfpimltxr.d . . . . . 6 𝐷 = dom 𝐹
53nfdm 5897 . . . . . 6 𝑥dom 𝐹
64, 5nfcxfr 2889 . . . . 5 𝑥𝐷
7 smfpimltxr.s . . . . . 6 (𝜑𝑆 ∈ SAlg)
8 smfpimltxr.f . . . . . 6 (𝜑𝐹 ∈ (SMblFn‘𝑆))
97, 8, 4smff 46714 . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
103, 6, 9pimltpnf2f 46694 . . . 4 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
112, 10sylan9eqr 2786 . . 3 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = 𝐷)
127, 8, 4smfdmss 46715 . . . . 5 (𝜑𝐷 𝑆)
137, 12subsaluni 46342 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
1413adantr 480 . . 3 ((𝜑𝐴 = +∞) → 𝐷 ∈ (𝑆t 𝐷))
1511, 14eqeltrd 2828 . 2 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
16 breq2 5099 . . . . . . . 8 (𝐴 = -∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < -∞))
1716rabbidv 3404 . . . . . . 7 (𝐴 = -∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
1817adantl 481 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
199adantr 480 . . . . . . 7 ((𝜑𝐴 = -∞) → 𝐹:𝐷⟶ℝ)
203, 6, 19pimltmnf2f 46679 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < -∞} = ∅)
2118, 20eqtrd 2764 . . . . 5 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = ∅)
228dmexd 7843 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
234, 22eqeltrid 2832 . . . . . . . 8 (𝜑𝐷 ∈ V)
24 eqid 2729 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
257, 23, 24subsalsal 46341 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
26250sald 46332 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
2726adantr 480 . . . . 5 ((𝜑𝐴 = -∞) → ∅ ∈ (𝑆t 𝐷))
2821, 27eqeltrd 2828 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
2928adantlr 715 . . 3 (((𝜑𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
30 simpll 766 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
31 smfpimltxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3230, 31syl 17 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
33 neqne 2933 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
3433adantl 481 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
35 simplr 768 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞)
3632, 34, 35xrred 45345 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
377adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
388adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
39 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
403, 37, 38, 4, 39smfpreimaltf 46718 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4130, 36, 40syl2anc 584 . . 3 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4229, 41pm2.61dan 812 . 2 ((𝜑𝐴 ≠ +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4315, 42pm2.61dane 3012 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wne 2925  {crab 3396  Vcvv 3438  c0 4286   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167   < clt 11168  t crest 17342  SAlgcsalg 46290  SMblFncsmblfn 46677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-ac2 10376  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-acn 9857  df-ac 10029  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-ioo 13270  df-ico 13272  df-rest 17344  df-salg 46291  df-smblfn 46678
This theorem is referenced by:  smfpimltxrmptf  46740  smfpimne  46821  smfsupdmmbllem  46826
  Copyright terms: Public domain W3C validator