Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltxr Structured version   Visualization version   GIF version

Theorem smfpimltxr 46859
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.)
Hypotheses
Ref Expression
smfpimltxr.x 𝑥𝐹
smfpimltxr.s (𝜑𝑆 ∈ SAlg)
smfpimltxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimltxr.d 𝐷 = dom 𝐹
smfpimltxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimltxr (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimltxr
StepHypRef Expression
1 breq2 5099 . . . . 5 (𝐴 = +∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < +∞))
21rabbidv 3404 . . . 4 (𝐴 = +∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < +∞})
3 smfpimltxr.x . . . . 5 𝑥𝐹
4 smfpimltxr.d . . . . . 6 𝐷 = dom 𝐹
53nfdm 5898 . . . . . 6 𝑥dom 𝐹
64, 5nfcxfr 2894 . . . . 5 𝑥𝐷
7 smfpimltxr.s . . . . . 6 (𝜑𝑆 ∈ SAlg)
8 smfpimltxr.f . . . . . 6 (𝜑𝐹 ∈ (SMblFn‘𝑆))
97, 8, 4smff 46844 . . . . 5 (𝜑𝐹:𝐷⟶ℝ)
103, 6, 9pimltpnf2f 46824 . . . 4 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < +∞} = 𝐷)
112, 10sylan9eqr 2790 . . 3 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = 𝐷)
127, 8, 4smfdmss 46845 . . . . 5 (𝜑𝐷 𝑆)
137, 12subsaluni 46472 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
1413adantr 480 . . 3 ((𝜑𝐴 = +∞) → 𝐷 ∈ (𝑆t 𝐷))
1511, 14eqeltrd 2833 . 2 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
16 breq2 5099 . . . . . . . 8 (𝐴 = -∞ → ((𝐹𝑥) < 𝐴 ↔ (𝐹𝑥) < -∞))
1716rabbidv 3404 . . . . . . 7 (𝐴 = -∞ → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
1817adantl 481 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = {𝑥𝐷 ∣ (𝐹𝑥) < -∞})
199adantr 480 . . . . . . 7 ((𝜑𝐴 = -∞) → 𝐹:𝐷⟶ℝ)
203, 6, 19pimltmnf2f 46809 . . . . . 6 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < -∞} = ∅)
2118, 20eqtrd 2768 . . . . 5 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} = ∅)
228dmexd 7842 . . . . . . . . 9 (𝜑 → dom 𝐹 ∈ V)
234, 22eqeltrid 2837 . . . . . . . 8 (𝜑𝐷 ∈ V)
24 eqid 2733 . . . . . . . 8 (𝑆t 𝐷) = (𝑆t 𝐷)
257, 23, 24subsalsal 46471 . . . . . . 7 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
26250sald 46462 . . . . . 6 (𝜑 → ∅ ∈ (𝑆t 𝐷))
2726adantr 480 . . . . 5 ((𝜑𝐴 = -∞) → ∅ ∈ (𝑆t 𝐷))
2821, 27eqeltrd 2833 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
2928adantlr 715 . . 3 (((𝜑𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
30 simpll 766 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑)
31 smfpimltxr.a . . . . . 6 (𝜑𝐴 ∈ ℝ*)
3230, 31syl 17 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
33 neqne 2938 . . . . . 6 𝐴 = -∞ → 𝐴 ≠ -∞)
3433adantl 481 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
35 simplr 768 . . . . 5 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞)
3632, 34, 35xrred 45477 . . . 4 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ)
377adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
388adantr 480 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
39 simpr 484 . . . . 5 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
403, 37, 38, 4, 39smfpreimaltf 46848 . . . 4 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4130, 36, 40syl2anc 584 . . 3 (((𝜑𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4229, 41pm2.61dan 812 . 2 ((𝜑𝐴 ≠ +∞) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
4315, 42pm2.61dane 3017 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wnfc 2881  wne 2930  {crab 3397  Vcvv 3438  c0 4284   class class class wbr 5095  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  cr 11015  +∞cpnf 11153  -∞cmnf 11154  *cxr 11155   < clt 11156  t crest 17334  SAlgcsalg 46420  SMblFncsmblfn 46807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9541  ax-cc 10336  ax-ac2 10364  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-pm 8762  df-en 8879  df-dom 8880  df-sdom 8881  df-fin 8882  df-card 9842  df-acn 9845  df-ac 10017  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-n0 12392  df-z 12479  df-uz 12743  df-ioo 13259  df-ico 13261  df-rest 17336  df-salg 46421  df-smblfn 46808
This theorem is referenced by:  smfpimltxrmptf  46870  smfpimne  46951  smfsupdmmbllem  46956
  Copyright terms: Public domain W3C validator