| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimltxr | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) (Revised by Glauco Siliprandi, 15-Dec-2024.) |
| Ref | Expression |
|---|---|
| smfpimltxr.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimltxr.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimltxr.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimltxr.d | ⊢ 𝐷 = dom 𝐹 |
| smfpimltxr.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| Ref | Expression |
|---|---|
| smfpimltxr | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . . . . 5 ⊢ (𝐴 = +∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < +∞)) | |
| 2 | 1 | rabbidv 3416 | . . . 4 ⊢ (𝐴 = +∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞}) |
| 3 | smfpimltxr.x | . . . . 5 ⊢ Ⅎ𝑥𝐹 | |
| 4 | smfpimltxr.d | . . . . . 6 ⊢ 𝐷 = dom 𝐹 | |
| 5 | 3 | nfdm 5918 | . . . . . 6 ⊢ Ⅎ𝑥dom 𝐹 |
| 6 | 4, 5 | nfcxfr 2890 | . . . . 5 ⊢ Ⅎ𝑥𝐷 |
| 7 | smfpimltxr.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 8 | smfpimltxr.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 9 | 7, 8, 4 | smff 46737 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 10 | 3, 6, 9 | pimltpnf2f 46717 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < +∞} = 𝐷) |
| 11 | 2, 10 | sylan9eqr 2787 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = 𝐷) |
| 12 | 7, 8, 4 | smfdmss 46738 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 13 | 7, 12 | subsaluni 46365 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = +∞) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 15 | 11, 14 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝐴 = +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 16 | breq2 5114 | . . . . . . . 8 ⊢ (𝐴 = -∞ → ((𝐹‘𝑥) < 𝐴 ↔ (𝐹‘𝑥) < -∞)) | |
| 17 | 16 | rabbidv 3416 | . . . . . . 7 ⊢ (𝐴 = -∞ → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 18 | 17 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞}) |
| 19 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = -∞) → 𝐹:𝐷⟶ℝ) |
| 20 | 3, 6, 19 | pimltmnf2f 46702 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < -∞} = ∅) |
| 21 | 18, 20 | eqtrd 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} = ∅) |
| 22 | 8 | dmexd 7882 | . . . . . . . . 9 ⊢ (𝜑 → dom 𝐹 ∈ V) |
| 23 | 4, 22 | eqeltrid 2833 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ V) |
| 24 | eqid 2730 | . . . . . . . 8 ⊢ (𝑆 ↾t 𝐷) = (𝑆 ↾t 𝐷) | |
| 25 | 7, 23, 24 | subsalsal 46364 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ↾t 𝐷) ∈ SAlg) |
| 26 | 25 | 0sald 46355 | . . . . . 6 ⊢ (𝜑 → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 27 | 26 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = -∞) → ∅ ∈ (𝑆 ↾t 𝐷)) |
| 28 | 21, 27 | eqeltrd 2829 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 29 | 28 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 30 | simpll 766 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝜑) | |
| 31 | smfpimltxr.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 32 | 30, 31 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*) |
| 33 | neqne 2934 | . . . . . 6 ⊢ (¬ 𝐴 = -∞ → 𝐴 ≠ -∞) | |
| 34 | 33 | adantl 481 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
| 35 | simplr 768 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ +∞) | |
| 36 | 32, 34, 35 | xrred 45368 | . . . 4 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ) |
| 37 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 38 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 39 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 40 | 3, 37, 38, 4, 39 | smfpreimaltf 46741 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 41 | 30, 36, 40 | syl2anc 584 | . . 3 ⊢ (((𝜑 ∧ 𝐴 ≠ +∞) ∧ ¬ 𝐴 = -∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 42 | 29, 41 | pm2.61dan 812 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ +∞) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 43 | 15, 42 | pm2.61dane 3013 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 ≠ wne 2926 {crab 3408 Vcvv 3450 ∅c0 4299 class class class wbr 5110 dom cdm 5641 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 +∞cpnf 11212 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 ↾t crest 17390 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-ioo 13317 df-ico 13319 df-rest 17392 df-salg 46314 df-smblfn 46701 |
| This theorem is referenced by: smfpimltxrmptf 46763 smfpimne 46844 smfsupdmmbllem 46849 |
| Copyright terms: Public domain | W3C validator |