MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndac Structured version   Visualization version   GIF version

Theorem zfcndac 10375
Description: Axiom of Choice ax-ac 10215, reproved from conditionless ZFC axioms. (Contributed by NM, 15-Aug-2003.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
zfcndac 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡

Proof of Theorem zfcndac
StepHypRef Expression
1 axacnd 10368 . . 3 𝑦𝑧𝑤(∀𝑦(𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2 19.3v 1985 . . . . . 6 (∀𝑦(𝑧𝑤𝑤𝑥) ↔ (𝑧𝑤𝑤𝑥))
32imbi1i 350 . . . . 5 ((∀𝑦(𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)) ↔ ((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
432albii 1823 . . . 4 (∀𝑧𝑤(∀𝑦(𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)) ↔ ∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
54exbii 1850 . . 3 (∃𝑦𝑧𝑤(∀𝑦(𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
61, 5mpbi 229 . 2 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
7 equequ2 2029 . . . . . . . . . 10 (𝑣 = 𝑥 → (𝑢 = 𝑣𝑢 = 𝑥))
87bibi2d 343 . . . . . . . . 9 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥)))
9 elequ2 2121 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑤𝑡𝑤𝑥))
109anbi2d 629 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑤𝑤𝑡) ↔ (𝑢𝑤𝑤𝑥)))
11 elequ2 2121 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑢𝑡𝑢𝑥))
12 elequ1 2113 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (𝑡𝑦𝑥𝑦))
1311, 12anbi12d 631 . . . . . . . . . . . 12 (𝑡 = 𝑥 → ((𝑢𝑡𝑡𝑦) ↔ (𝑢𝑥𝑥𝑦)))
1410, 13anbi12d 631 . . . . . . . . . . 11 (𝑡 = 𝑥 → (((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦))))
1514cbvexvw 2040 . . . . . . . . . 10 (∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ ∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)))
1615bibi1i 339 . . . . . . . . 9 ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥))
178, 16bitrdi 287 . . . . . . . 8 (𝑣 = 𝑥 → ((∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
1817albidv 1923 . . . . . . 7 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥)))
19 elequ1 2113 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑤𝑧𝑤))
2019anbi1d 630 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑤𝑤𝑥) ↔ (𝑧𝑤𝑤𝑥)))
21 elequ1 2113 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (𝑢𝑥𝑧𝑥))
2221anbi1d 630 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((𝑢𝑥𝑥𝑦) ↔ (𝑧𝑥𝑥𝑦)))
2320, 22anbi12d 631 . . . . . . . . . 10 (𝑢 = 𝑧 → (((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
2423exbidv 1924 . . . . . . . . 9 (𝑢 = 𝑧 → (∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ ∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦))))
25 equequ1 2028 . . . . . . . . 9 (𝑢 = 𝑧 → (𝑢 = 𝑥𝑧 = 𝑥))
2624, 25bibi12d 346 . . . . . . . 8 (𝑢 = 𝑧 → ((∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ (∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2726cbvalvw 2039 . . . . . . 7 (∀𝑢(∃𝑥((𝑢𝑤𝑤𝑥) ∧ (𝑢𝑥𝑥𝑦)) ↔ 𝑢 = 𝑥) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
2818, 27bitrdi 287 . . . . . 6 (𝑣 = 𝑥 → (∀𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∀𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
2928cbvexvw 2040 . . . . 5 (∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣) ↔ ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥))
3029imbi2i 336 . . . 4 (((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
31302albii 1823 . . 3 (∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∀𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
3231exbii 1850 . 2 (∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣)) ↔ ∃𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑥𝑧(∃𝑥((𝑧𝑤𝑤𝑥) ∧ (𝑧𝑥𝑥𝑦)) ↔ 𝑧 = 𝑥)))
336, 32mpbir 230 1 𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-reg 9351  ax-ac 10215
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-fr 5544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator