Step | Hyp | Ref
| Expression |
1 | | 1stcclb.1 |
. . . 4
⊢ 𝑋 = ∪
𝐽 |
2 | 1 | is1stc2 22501 |
. . 3
⊢ (𝐽 ∈ 1stω
↔ (𝐽 ∈ Top ∧
∀𝑤 ∈ 𝑋 ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))))) |
3 | 2 | simprbi 496 |
. 2
⊢ (𝐽 ∈ 1stω
→ ∀𝑤 ∈
𝑋 ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
4 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (𝑤 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)) |
5 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑤 = 𝐴 → (𝑤 ∈ 𝑧 ↔ 𝐴 ∈ 𝑧)) |
6 | 5 | anbi1d 629 |
. . . . . . . 8
⊢ (𝑤 = 𝐴 → ((𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
7 | 6 | rexbidv 3225 |
. . . . . . 7
⊢ (𝑤 = 𝐴 → (∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦) ↔ ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) |
8 | 4, 7 | imbi12d 344 |
. . . . . 6
⊢ (𝑤 = 𝐴 → ((𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
9 | 8 | ralbidv 3120 |
. . . . 5
⊢ (𝑤 = 𝐴 → (∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)) ↔ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |
10 | 9 | anbi2d 628 |
. . . 4
⊢ (𝑤 = 𝐴 → ((𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) ↔ (𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))))) |
11 | 10 | rexbidv 3225 |
. . 3
⊢ (𝑤 = 𝐴 → (∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) ↔ ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))))) |
12 | 11 | rspcv 3547 |
. 2
⊢ (𝐴 ∈ 𝑋 → (∀𝑤 ∈ 𝑋 ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝑤 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝑤 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦))))) |
13 | 3, 12 | mpan9 506 |
1
⊢ ((𝐽 ∈ 1stω
∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦 ∈ 𝐽 (𝐴 ∈ 𝑦 → ∃𝑧 ∈ 𝑥 (𝐴 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑦)))) |