MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stcclb Structured version   Visualization version   GIF version

Theorem 1stcclb 23379
Description: A property of points in a first-countable topology. (Contributed by Jeff Hankins, 22-Aug-2009.)
Hypothesis
Ref Expression
1stcclb.1 𝑋 = 𝐽
Assertion
Ref Expression
1stcclb ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐽,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem 1stcclb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 1stcclb.1 . . . 4 𝑋 = 𝐽
21is1stc2 23377 . . 3 (𝐽 ∈ 1stω ↔ (𝐽 ∈ Top ∧ ∀𝑤𝑋𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦)))))
32simprbi 496 . 2 (𝐽 ∈ 1stω → ∀𝑤𝑋𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦))))
4 eleq1 2821 . . . . . . 7 (𝑤 = 𝐴 → (𝑤𝑦𝐴𝑦))
5 eleq1 2821 . . . . . . . . 9 (𝑤 = 𝐴 → (𝑤𝑧𝐴𝑧))
65anbi1d 631 . . . . . . . 8 (𝑤 = 𝐴 → ((𝑤𝑧𝑧𝑦) ↔ (𝐴𝑧𝑧𝑦)))
76rexbidv 3157 . . . . . . 7 (𝑤 = 𝐴 → (∃𝑧𝑥 (𝑤𝑧𝑧𝑦) ↔ ∃𝑧𝑥 (𝐴𝑧𝑧𝑦)))
84, 7imbi12d 344 . . . . . 6 (𝑤 = 𝐴 → ((𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦)) ↔ (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦))))
98ralbidv 3156 . . . . 5 (𝑤 = 𝐴 → (∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦)) ↔ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦))))
109anbi2d 630 . . . 4 (𝑤 = 𝐴 → ((𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦))) ↔ (𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦)))))
1110rexbidv 3157 . . 3 (𝑤 = 𝐴 → (∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦))) ↔ ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦)))))
1211rspcv 3569 . 2 (𝐴𝑋 → (∀𝑤𝑋𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝑤𝑦 → ∃𝑧𝑥 (𝑤𝑧𝑧𝑦))) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦)))))
133, 12mpan9 506 1 ((𝐽 ∈ 1stω ∧ 𝐴𝑋) → ∃𝑥 ∈ 𝒫 𝐽(𝑥 ≼ ω ∧ ∀𝑦𝐽 (𝐴𝑦 → ∃𝑧𝑥 (𝐴𝑧𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898  𝒫 cpw 4551   cuni 4860   class class class wbr 5095  ωcom 7805  cdom 8877  Topctop 22828  1stωc1stc 23372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-in 3905  df-ss 3915  df-pw 4553  df-uni 4861  df-1stc 23374
This theorem is referenced by:  1stcfb  23380  1stcrest  23388  lly1stc  23431  tx1stc  23585
  Copyright terms: Public domain W3C validator