| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | llytop 23480 | . . . 4
⊢ (𝑗 ∈ Locally
1stω → 𝑗 ∈ Top) | 
| 2 |  | simprr 773 | . . . . . . . . 9
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
(𝑗 ↾t
𝑢) ∈
1stω) | 
| 3 |  | simprl 771 | . . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑥 ∈ 𝑢) | 
| 4 | 1 | ad3antrrr 730 | . . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑗 ∈ Top) | 
| 5 |  | elssuni 4937 | . . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗) | 
| 6 | 5 | ad2antlr 727 | . . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑢 ⊆ ∪ 𝑗) | 
| 7 |  | eqid 2737 | . . . . . . . . . . . 12
⊢ ∪ 𝑗 =
∪ 𝑗 | 
| 8 | 7 | restuni 23170 | . . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ⊆ ∪ 𝑗)
→ 𝑢 = ∪ (𝑗
↾t 𝑢)) | 
| 9 | 4, 6, 8 | syl2anc 584 | . . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑢 = ∪
(𝑗 ↾t
𝑢)) | 
| 10 | 3, 9 | eleqtrd 2843 | . . . . . . . . 9
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑥 ∈ ∪ (𝑗
↾t 𝑢)) | 
| 11 |  | eqid 2737 | . . . . . . . . . 10
⊢ ∪ (𝑗
↾t 𝑢) =
∪ (𝑗 ↾t 𝑢) | 
| 12 | 11 | 1stcclb 23452 | . . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ 1stω
∧ 𝑥 ∈ ∪ (𝑗
↾t 𝑢))
→ ∃𝑡 ∈
𝒫 (𝑗
↾t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)))) | 
| 13 | 2, 10, 12 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑡 ∈ 𝒫
(𝑗 ↾t
𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)))) | 
| 14 |  | elpwi 4607 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) → 𝑡 ⊆ (𝑗 ↾t 𝑢)) | 
| 15 | 14 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑡 ⊆ (𝑗 ↾t 𝑢)) | 
| 16 | 15 | sselda 3983 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ∈ (𝑗 ↾t 𝑢)) | 
| 17 | 4 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑗 ∈ Top) | 
| 18 |  | simpllr 776 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑢 ∈ 𝑗) | 
| 19 |  | restopn2 23185 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑛 ∈ (𝑗 ↾t 𝑢) ↔ (𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢))) | 
| 20 | 17, 18, 19 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (𝑛 ∈ (𝑗 ↾t 𝑢) ↔ (𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢))) | 
| 21 | 20 | simplbda 499 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ (𝑗 ↾t 𝑢)) → 𝑛 ⊆ 𝑢) | 
| 22 | 16, 21 | syldan 591 | . . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ⊆ 𝑢) | 
| 23 |  | dfss2 3969 | . . . . . . . . . . . . . . 15
⊢ (𝑛 ⊆ 𝑢 ↔ (𝑛 ∩ 𝑢) = 𝑛) | 
| 24 | 22, 23 | sylib 218 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ∩ 𝑢) = 𝑛) | 
| 25 | 20 | simprbda 498 | . . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ (𝑗 ↾t 𝑢)) → 𝑛 ∈ 𝑗) | 
| 26 | 16, 25 | syldan 591 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ∈ 𝑗) | 
| 27 | 24, 26 | eqeltrd 2841 | . . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ∩ 𝑢) ∈ 𝑗) | 
| 28 |  | ineq1 4213 | . . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑛 → (𝑎 ∩ 𝑢) = (𝑛 ∩ 𝑢)) | 
| 29 | 28 | cbvmptv 5255 | . . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) = (𝑛 ∈ 𝑡 ↦ (𝑛 ∩ 𝑢)) | 
| 30 | 27, 29 | fmptd 7134 | . . . . . . . . . . . 12
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)):𝑡⟶𝑗) | 
| 31 | 30 | frnd 6744 | . . . . . . . . . . 11
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) | 
| 32 | 31 | adantrr 717 | . . . . . . . . . 10
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) | 
| 33 |  | vex 3484 | . . . . . . . . . . 11
⊢ 𝑗 ∈ V | 
| 34 | 33 | elpw2 5334 | . . . . . . . . . 10
⊢ (ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗 ↔ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) | 
| 35 | 32, 34 | sylibr 234 | . . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗) | 
| 36 |  | simprrl 781 | . . . . . . . . . 10
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → 𝑡 ≼ ω) | 
| 37 |  | 1stcrestlem 23460 | . . . . . . . . . 10
⊢ (𝑡 ≼ ω → ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω) | 
| 38 | 36, 37 | syl 17 | . . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω) | 
| 39 |  | simprr 773 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ 𝑧) | 
| 40 | 3 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ 𝑢) | 
| 41 | 39, 40 | elind 4200 | . . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ (𝑧 ∩ 𝑢)) | 
| 42 |  | eleq2 2830 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑥 ∈ 𝑣 ↔ 𝑥 ∈ (𝑧 ∩ 𝑢))) | 
| 43 |  | sseq2 4010 | . . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑛 ⊆ 𝑣 ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢))) | 
| 44 | 43 | anbi2d 630 | . . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) | 
| 45 | 44 | rexbidv 3179 | . . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) | 
| 46 | 42, 45 | imbi12d 344 | . . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)) ↔ (𝑥 ∈ (𝑧 ∩ 𝑢) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢))))) | 
| 47 |  | simprrr 782 | . . . . . . . . . . . . . . 15
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))) | 
| 48 | 47 | adantr 480 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))) | 
| 49 | 4 | ad2antrr 726 | . . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑗 ∈ Top) | 
| 50 |  | simpllr 776 | . . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → 𝑢 ∈ 𝑗) | 
| 51 | 50 | adantr 480 | . . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑢 ∈ 𝑗) | 
| 52 |  | simprl 771 | . . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑧 ∈ 𝑗) | 
| 53 |  | elrestr 17473 | . . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ∧ 𝑧 ∈ 𝑗) → (𝑧 ∩ 𝑢) ∈ (𝑗 ↾t 𝑢)) | 
| 54 | 49, 51, 52, 53 | syl3anc 1373 | . . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (𝑧 ∩ 𝑢) ∈ (𝑗 ↾t 𝑢)) | 
| 55 | 46, 48, 54 | rspcdva 3623 | . . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (𝑥 ∈ (𝑧 ∩ 𝑢) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) | 
| 56 | 41, 55 | mpd 15 | . . . . . . . . . . . 12
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢))) | 
| 57 | 3 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑥 ∈ 𝑢) | 
| 58 |  | elin 3967 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑛 ∩ 𝑢) ↔ (𝑥 ∈ 𝑛 ∧ 𝑥 ∈ 𝑢)) | 
| 59 | 58 | simplbi2com 502 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑢 → (𝑥 ∈ 𝑛 → 𝑥 ∈ (𝑛 ∩ 𝑢))) | 
| 60 | 57, 59 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑥 ∈ 𝑛 → 𝑥 ∈ (𝑛 ∩ 𝑢))) | 
| 61 | 22 | biantrud 531 | . . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ 𝑧 ↔ (𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢))) | 
| 62 |  | ssin 4239 | . . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢) ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢)) | 
| 63 | 61, 62 | bitrdi 287 | . . . . . . . . . . . . . . . . . 18
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ 𝑧 ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢))) | 
| 64 |  | ssinss1 4246 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ⊆ 𝑧 → (𝑛 ∩ 𝑢) ⊆ 𝑧) | 
| 65 | 63, 64 | biimtrrdi 254 | . . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ (𝑧 ∩ 𝑢) → (𝑛 ∩ 𝑢) ⊆ 𝑧)) | 
| 66 | 60, 65 | anim12d 609 | . . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → ((𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) | 
| 67 | 66 | reximdva 3168 | . . . . . . . . . . . . . . 15
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) | 
| 68 |  | vex 3484 | . . . . . . . . . . . . . . . . . 18
⊢ 𝑛 ∈ V | 
| 69 | 68 | inex1 5317 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∩ 𝑢) ∈ V | 
| 70 | 69 | rgenw 3065 | . . . . . . . . . . . . . . . 16
⊢
∀𝑛 ∈
𝑡 (𝑛 ∩ 𝑢) ∈ V | 
| 71 |  | eleq2 2830 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑛 ∩ 𝑢) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (𝑛 ∩ 𝑢))) | 
| 72 |  | sseq1 4009 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑛 ∩ 𝑢) → (𝑤 ⊆ 𝑧 ↔ (𝑛 ∩ 𝑢) ⊆ 𝑧)) | 
| 73 | 71, 72 | anbi12d 632 | . . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑛 ∩ 𝑢) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) | 
| 74 | 29, 73 | rexrnmptw 7115 | . . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
𝑡 (𝑛 ∩ 𝑢) ∈ V → (∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) | 
| 75 | 70, 74 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
(∃𝑤 ∈ ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧)) | 
| 76 | 67, 75 | imbitrrdi 252 | . . . . . . . . . . . . . 14
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 77 | 76 | adantrr 717 | . . . . . . . . . . . . 13
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 78 | 77 | adantr 480 | . . . . . . . . . . . 12
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 79 | 56, 78 | mpd 15 | . . . . . . . . . . 11
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) | 
| 80 | 79 | expr 456 | . . . . . . . . . 10
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ 𝑧 ∈ 𝑗) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 81 | 80 | ralrimiva 3146 | . . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 82 |  | breq1 5146 | . . . . . . . . . . 11
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (𝑦 ≼ ω ↔ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω)) | 
| 83 |  | rexeq 3322 | . . . . . . . . . . . . 13
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) | 
| 84 | 83 | imbi2d 340 | . . . . . . . . . . . 12
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 85 | 84 | ralbidv 3178 | . . . . . . . . . . 11
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 86 | 82, 85 | anbi12d 632 | . . . . . . . . . 10
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ (ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | 
| 87 | 86 | rspcev 3622 | . . . . . . . . 9
⊢ ((ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗 ∧ (ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 88 | 35, 38, 81, 87 | syl12anc 837 | . . . . . . . 8
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 89 | 13, 88 | rexlimddv 3161 | . . . . . . 7
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑦 ∈ 𝒫
𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 90 | 89 | 3adantr1 1170 | . . . . . 6
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑦 ∈ 𝒫
𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 91 |  | simpl 482 | . . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑗 ∈ Locally
1stω) | 
| 92 | 1 | adantr 480 | . . . . . . . 8
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑗 ∈ Top) | 
| 93 | 7 | topopn 22912 | . . . . . . . 8
⊢ (𝑗 ∈ Top → ∪ 𝑗
∈ 𝑗) | 
| 94 | 92, 93 | syl 17 | . . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∪ 𝑗
∈ 𝑗) | 
| 95 |  | simpr 484 | . . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑥 ∈ ∪ 𝑗) | 
| 96 |  | llyi 23482 | . . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ ∪ 𝑗 ∈ 𝑗 ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈
1stω)) | 
| 97 | 91, 94, 95, 96 | syl3anc 1373 | . . . . . 6
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈
1stω)) | 
| 98 | 90, 97 | r19.29a 3162 | . . . . 5
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 99 | 98 | ralrimiva 3146 | . . . 4
⊢ (𝑗 ∈ Locally
1stω → ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) | 
| 100 | 7 | is1stc2 23450 | . . . 4
⊢ (𝑗 ∈ 1stω
↔ (𝑗 ∈ Top ∧
∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) | 
| 101 | 1, 99, 100 | sylanbrc 583 | . . 3
⊢ (𝑗 ∈ Locally
1stω → 𝑗 ∈
1stω) | 
| 102 | 101 | ssriv 3987 | . 2
⊢ Locally
1stω ⊆ 1stω | 
| 103 |  | 1stcrest 23461 | . . . . 5
⊢ ((𝑗 ∈ 1stω
∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈
1stω) | 
| 104 | 103 | adantl 481 | . . . 4
⊢
((⊤ ∧ (𝑗
∈ 1stω ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈
1stω) | 
| 105 |  | 1stctop 23451 | . . . . . 6
⊢ (𝑗 ∈ 1stω
→ 𝑗 ∈
Top) | 
| 106 | 105 | ssriv 3987 | . . . . 5
⊢
1stω ⊆ Top | 
| 107 | 106 | a1i 11 | . . . 4
⊢ (⊤
→ 1stω ⊆ Top) | 
| 108 | 104, 107 | restlly 23491 | . . 3
⊢ (⊤
→ 1stω ⊆ Locally
1stω) | 
| 109 | 108 | mptru 1547 | . 2
⊢
1stω ⊆ Locally
1stω | 
| 110 | 102, 109 | eqssi 4000 | 1
⊢ Locally
1stω = 1stω |