Step | Hyp | Ref
| Expression |
1 | | llytop 22531 |
. . . 4
⊢ (𝑗 ∈ Locally
1stω → 𝑗 ∈ Top) |
2 | | simprr 769 |
. . . . . . . . 9
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
(𝑗 ↾t
𝑢) ∈
1stω) |
3 | | simprl 767 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑥 ∈ 𝑢) |
4 | 1 | ad3antrrr 726 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑗 ∈ Top) |
5 | | elssuni 4868 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ 𝑗 → 𝑢 ⊆ ∪ 𝑗) |
6 | 5 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑢 ⊆ ∪ 𝑗) |
7 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ ∪ 𝑗 =
∪ 𝑗 |
8 | 7 | restuni 22221 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ Top ∧ 𝑢 ⊆ ∪ 𝑗)
→ 𝑢 = ∪ (𝑗
↾t 𝑢)) |
9 | 4, 6, 8 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑢 = ∪
(𝑗 ↾t
𝑢)) |
10 | 3, 9 | eleqtrd 2841 |
. . . . . . . . 9
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) → 𝑥 ∈ ∪ (𝑗
↾t 𝑢)) |
11 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ (𝑗
↾t 𝑢) =
∪ (𝑗 ↾t 𝑢) |
12 | 11 | 1stcclb 22503 |
. . . . . . . . 9
⊢ (((𝑗 ↾t 𝑢) ∈ 1stω
∧ 𝑥 ∈ ∪ (𝑗
↾t 𝑢))
→ ∃𝑡 ∈
𝒫 (𝑗
↾t 𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)))) |
13 | 2, 10, 12 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑡 ∈ 𝒫
(𝑗 ↾t
𝑢)(𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)))) |
14 | | elpwi 4539 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) → 𝑡 ⊆ (𝑗 ↾t 𝑢)) |
15 | 14 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑡 ⊆ (𝑗 ↾t 𝑢)) |
16 | 15 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ∈ (𝑗 ↾t 𝑢)) |
17 | 4 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑗 ∈ Top) |
18 | | simpllr 772 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → 𝑢 ∈ 𝑗) |
19 | | restopn2 22236 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗) → (𝑛 ∈ (𝑗 ↾t 𝑢) ↔ (𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢))) |
20 | 17, 18, 19 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (𝑛 ∈ (𝑗 ↾t 𝑢) ↔ (𝑛 ∈ 𝑗 ∧ 𝑛 ⊆ 𝑢))) |
21 | 20 | simplbda 499 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ (𝑗 ↾t 𝑢)) → 𝑛 ⊆ 𝑢) |
22 | 16, 21 | syldan 590 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ⊆ 𝑢) |
23 | | df-ss 3900 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 ⊆ 𝑢 ↔ (𝑛 ∩ 𝑢) = 𝑛) |
24 | 22, 23 | sylib 217 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ∩ 𝑢) = 𝑛) |
25 | 20 | simprbda 498 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ (𝑗 ↾t 𝑢)) → 𝑛 ∈ 𝑗) |
26 | 16, 25 | syldan 590 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑛 ∈ 𝑗) |
27 | 24, 26 | eqeltrd 2839 |
. . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ∩ 𝑢) ∈ 𝑗) |
28 | | ineq1 4136 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = 𝑛 → (𝑎 ∩ 𝑢) = (𝑛 ∩ 𝑢)) |
29 | 28 | cbvmptv 5183 |
. . . . . . . . . . . . 13
⊢ (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) = (𝑛 ∈ 𝑡 ↦ (𝑛 ∩ 𝑢)) |
30 | 27, 29 | fmptd 6970 |
. . . . . . . . . . . 12
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)):𝑡⟶𝑗) |
31 | 30 | frnd 6592 |
. . . . . . . . . . 11
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) |
32 | 31 | adantrr 713 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) |
33 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑗 ∈ V |
34 | 33 | elpw2 5264 |
. . . . . . . . . 10
⊢ (ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗 ↔ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ⊆ 𝑗) |
35 | 32, 34 | sylibr 233 |
. . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗) |
36 | | simprrl 777 |
. . . . . . . . . 10
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → 𝑡 ≼ ω) |
37 | | 1stcrestlem 22511 |
. . . . . . . . . 10
⊢ (𝑡 ≼ ω → ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω) |
38 | 36, 37 | syl 17 |
. . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω) |
39 | | simprr 769 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ 𝑧) |
40 | 3 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ 𝑢) |
41 | 39, 40 | elind 4124 |
. . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑥 ∈ (𝑧 ∩ 𝑢)) |
42 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑥 ∈ 𝑣 ↔ 𝑥 ∈ (𝑧 ∩ 𝑢))) |
43 | | sseq2 3943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (𝑛 ⊆ 𝑣 ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢))) |
44 | 43 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) |
45 | 44 | rexbidv 3225 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑧 ∩ 𝑢) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) |
46 | 42, 45 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑧 ∩ 𝑢) → ((𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣)) ↔ (𝑥 ∈ (𝑧 ∩ 𝑢) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢))))) |
47 | | simprrr 778 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))) |
48 | 47 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))) |
49 | 4 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑗 ∈ Top) |
50 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → 𝑢 ∈ 𝑗) |
51 | 50 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑢 ∈ 𝑗) |
52 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → 𝑧 ∈ 𝑗) |
53 | | elrestr 17056 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ∧ 𝑧 ∈ 𝑗) → (𝑧 ∩ 𝑢) ∈ (𝑗 ↾t 𝑢)) |
54 | 49, 51, 52, 53 | syl3anc 1369 |
. . . . . . . . . . . . . 14
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (𝑧 ∩ 𝑢) ∈ (𝑗 ↾t 𝑢)) |
55 | 46, 48, 54 | rspcdva 3554 |
. . . . . . . . . . . . 13
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (𝑥 ∈ (𝑧 ∩ 𝑢) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)))) |
56 | 41, 55 | mpd 15 |
. . . . . . . . . . . 12
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢))) |
57 | 3 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → 𝑥 ∈ 𝑢) |
58 | | elin 3899 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (𝑛 ∩ 𝑢) ↔ (𝑥 ∈ 𝑛 ∧ 𝑥 ∈ 𝑢)) |
59 | 58 | simplbi2com 502 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ 𝑢 → (𝑥 ∈ 𝑛 → 𝑥 ∈ (𝑛 ∩ 𝑢))) |
60 | 57, 59 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑥 ∈ 𝑛 → 𝑥 ∈ (𝑛 ∩ 𝑢))) |
61 | 22 | biantrud 531 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ 𝑧 ↔ (𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢))) |
62 | | ssin 4161 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑛 ⊆ 𝑧 ∧ 𝑛 ⊆ 𝑢) ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢)) |
63 | 61, 62 | bitrdi 286 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ 𝑧 ↔ 𝑛 ⊆ (𝑧 ∩ 𝑢))) |
64 | | ssinss1 4168 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ⊆ 𝑧 → (𝑛 ∩ 𝑢) ⊆ 𝑧) |
65 | 63, 64 | syl6bir 253 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → (𝑛 ⊆ (𝑧 ∩ 𝑢) → (𝑛 ∩ 𝑢) ⊆ 𝑧)) |
66 | 60, 65 | anim12d 608 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) ∧ 𝑛 ∈ 𝑡) → ((𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) |
67 | 66 | reximdva 3202 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) |
68 | | vex 3426 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑛 ∈ V |
69 | 68 | inex1 5236 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∩ 𝑢) ∈ V |
70 | 69 | rgenw 3075 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑛 ∈
𝑡 (𝑛 ∩ 𝑢) ∈ V |
71 | | eleq2 2827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑛 ∩ 𝑢) → (𝑥 ∈ 𝑤 ↔ 𝑥 ∈ (𝑛 ∩ 𝑢))) |
72 | | sseq1 3942 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = (𝑛 ∩ 𝑢) → (𝑤 ⊆ 𝑧 ↔ (𝑛 ∩ 𝑢) ⊆ 𝑧)) |
73 | 71, 72 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = (𝑛 ∩ 𝑢) → ((𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) |
74 | 29, 73 | rexrnmptw 6953 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑛 ∈
𝑡 (𝑛 ∩ 𝑢) ∈ V → (∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧))) |
75 | 70, 74 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑤 ∈ ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑛 ∈ 𝑡 (𝑥 ∈ (𝑛 ∩ 𝑢) ∧ (𝑛 ∩ 𝑢) ⊆ 𝑧)) |
76 | 67, 75 | syl6ibr 251 |
. . . . . . . . . . . . . 14
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ 𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
77 | 76 | adantrr 713 |
. . . . . . . . . . . . 13
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
78 | 77 | adantr 480 |
. . . . . . . . . . . 12
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → (∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ (𝑧 ∩ 𝑢)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
79 | 56, 78 | mpd 15 |
. . . . . . . . . . 11
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ (𝑧 ∈ 𝑗 ∧ 𝑥 ∈ 𝑧)) → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) |
80 | 79 | expr 456 |
. . . . . . . . . 10
⊢
((((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) ∧ 𝑧 ∈ 𝑗) → (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
81 | 80 | ralrimiva 3107 |
. . . . . . . . 9
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
82 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (𝑦 ≼ ω ↔ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω)) |
83 | | rexeq 3334 |
. . . . . . . . . . . . 13
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧) ↔ ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) |
84 | 83 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → ((𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
85 | 84 | ralbidv 3120 |
. . . . . . . . . . 11
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → (∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)) ↔ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
86 | 82, 85 | anbi12d 630 |
. . . . . . . . . 10
⊢ (𝑦 = ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) → ((𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))) ↔ (ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
87 | 86 | rspcev 3552 |
. . . . . . . . 9
⊢ ((ran
(𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ∈ 𝒫 𝑗 ∧ (ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢)) ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ ran (𝑎 ∈ 𝑡 ↦ (𝑎 ∩ 𝑢))(𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
88 | 35, 38, 81, 87 | syl12anc 833 |
. . . . . . . 8
⊢
(((((𝑗 ∈
Locally 1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) ∧ (𝑡 ∈ 𝒫 (𝑗 ↾t 𝑢) ∧ (𝑡 ≼ ω ∧ ∀𝑣 ∈ (𝑗 ↾t 𝑢)(𝑥 ∈ 𝑣 → ∃𝑛 ∈ 𝑡 (𝑥 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑣))))) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
89 | 13, 88 | rexlimddv 3219 |
. . . . . . 7
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑦 ∈ 𝒫
𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
90 | 89 | 3adantr1 1167 |
. . . . . 6
⊢ ((((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) ∧ 𝑢 ∈ 𝑗) ∧ (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 1stω)) →
∃𝑦 ∈ 𝒫
𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
91 | | simpl 482 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑗 ∈ Locally
1stω) |
92 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑗 ∈ Top) |
93 | 7 | topopn 21963 |
. . . . . . . 8
⊢ (𝑗 ∈ Top → ∪ 𝑗
∈ 𝑗) |
94 | 92, 93 | syl 17 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∪ 𝑗
∈ 𝑗) |
95 | | simpr 484 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → 𝑥 ∈ ∪ 𝑗) |
96 | | llyi 22533 |
. . . . . . 7
⊢ ((𝑗 ∈ Locally
1stω ∧ ∪ 𝑗 ∈ 𝑗 ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈
1stω)) |
97 | 91, 94, 95, 96 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑢 ∈ 𝑗 (𝑢 ⊆ ∪ 𝑗 ∧ 𝑥 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈
1stω)) |
98 | 90, 97 | r19.29a 3217 |
. . . . 5
⊢ ((𝑗 ∈ Locally
1stω ∧ 𝑥 ∈ ∪ 𝑗) → ∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
99 | 98 | ralrimiva 3107 |
. . . 4
⊢ (𝑗 ∈ Locally
1stω → ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧)))) |
100 | 7 | is1stc2 22501 |
. . . 4
⊢ (𝑗 ∈ 1stω
↔ (𝑗 ∈ Top ∧
∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → ∃𝑤 ∈ 𝑦 (𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧))))) |
101 | 1, 99, 100 | sylanbrc 582 |
. . 3
⊢ (𝑗 ∈ Locally
1stω → 𝑗 ∈
1stω) |
102 | 101 | ssriv 3921 |
. 2
⊢ Locally
1stω ⊆ 1stω |
103 | | 1stcrest 22512 |
. . . . 5
⊢ ((𝑗 ∈ 1stω
∧ 𝑥 ∈ 𝑗) → (𝑗 ↾t 𝑥) ∈
1stω) |
104 | 103 | adantl 481 |
. . . 4
⊢
((⊤ ∧ (𝑗
∈ 1stω ∧ 𝑥 ∈ 𝑗)) → (𝑗 ↾t 𝑥) ∈
1stω) |
105 | | 1stctop 22502 |
. . . . . 6
⊢ (𝑗 ∈ 1stω
→ 𝑗 ∈
Top) |
106 | 105 | ssriv 3921 |
. . . . 5
⊢
1stω ⊆ Top |
107 | 106 | a1i 11 |
. . . 4
⊢ (⊤
→ 1stω ⊆ Top) |
108 | 104, 107 | restlly 22542 |
. . 3
⊢ (⊤
→ 1stω ⊆ Locally
1stω) |
109 | 108 | mptru 1546 |
. 2
⊢
1stω ⊆ Locally
1stω |
110 | 102, 109 | eqssi 3933 |
1
⊢ Locally
1stω = 1stω |