![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1wlkdlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 1wlkd 29658. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = ⟨“𝑋𝑌”⟩ |
1wlkd.f | ⊢ 𝐹 = ⟨“𝐽”⟩ |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
Ref | Expression |
---|---|
1wlkdlem2 | ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | snidg 4663 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ {𝑋}) |
5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
6 | 4, 5 | eleqtrrd 2835 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝐼‘𝐽)) |
7 | 1wlkd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
8 | 1wlkd.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑉) |
10 | prssg 4823 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘𝐽))) | |
11 | 1, 9, 10 | syl2an2r 682 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘𝐽))) |
12 | 7, 11 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽))) |
13 | 12 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ (𝐼‘𝐽)) |
14 | 6, 13 | pm2.61dane 3028 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 ⊆ wss 3949 {csn 4629 {cpr 4631 ‘cfv 6544 ⟨“cs1 14550 ⟨“cs2 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 |
This theorem is referenced by: 1wlkdlem3 29656 1wlkdlem4 29657 |
Copyright terms: Public domain | W3C validator |