![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1wlkdlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for 1wlkd 30173. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
Ref | Expression |
---|---|
1wlkdlem2 | ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | snidg 4682 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ {𝑋}) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ {𝑋}) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ {𝑋}) |
5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
6 | 4, 5 | eleqtrrd 2847 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (𝐼‘𝐽)) |
7 | 1wlkd.j | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
8 | 1wlkd.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝑉) |
10 | prssg 4844 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘𝐽))) | |
11 | 1, 9, 10 | syl2an2r 684 | . . . 4 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽)) ↔ {𝑋, 𝑌} ⊆ (𝐼‘𝐽))) |
12 | 7, 11 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ (𝐼‘𝐽) ∧ 𝑌 ∈ (𝐼‘𝐽))) |
13 | 12 | simpld 494 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ (𝐼‘𝐽)) |
14 | 6, 13 | pm2.61dane 3035 | 1 ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ⊆ wss 3976 {csn 4648 {cpr 4650 ‘cfv 6573 〈“cs1 14643 〈“cs2 14890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: 1wlkdlem3 30171 1wlkdlem4 30172 |
Copyright terms: Public domain | W3C validator |