MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1wlkdlem1 Structured version   Visualization version   GIF version

Theorem 1wlkdlem1 30112
Description: Lemma 1 for 1wlkd 30116. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
1wlkd.f 𝐹 = ⟨“𝐽”⟩
1wlkd.x (𝜑𝑋𝑉)
1wlkd.y (𝜑𝑌𝑉)
Assertion
Ref Expression
1wlkdlem1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)

Proof of Theorem 1wlkdlem1
StepHypRef Expression
1 1wlkd.x . . . 4 (𝜑𝑋𝑉)
2 1wlkd.y . . . 4 (𝜑𝑌𝑉)
31, 2s2cld 14775 . . 3 (𝜑 → ⟨“𝑋𝑌”⟩ ∈ Word 𝑉)
4 wrdf 14422 . . . 4 (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 → ⟨“𝑋𝑌”⟩:(0..^(♯‘⟨“𝑋𝑌”⟩))⟶𝑉)
5 1z 12499 . . . . . . . 8 1 ∈ ℤ
6 fzval3 13631 . . . . . . . 8 (1 ∈ ℤ → (0...1) = (0..^(1 + 1)))
75, 6ax-mp 5 . . . . . . 7 (0...1) = (0..^(1 + 1))
8 1wlkd.f . . . . . . . . . 10 𝐹 = ⟨“𝐽”⟩
98fveq2i 6825 . . . . . . . . 9 (♯‘𝐹) = (♯‘⟨“𝐽”⟩)
10 s1len 14511 . . . . . . . . 9 (♯‘⟨“𝐽”⟩) = 1
119, 10eqtri 2754 . . . . . . . 8 (♯‘𝐹) = 1
1211oveq2i 7357 . . . . . . 7 (0...(♯‘𝐹)) = (0...1)
13 s2len 14793 . . . . . . . . 9 (♯‘⟨“𝑋𝑌”⟩) = 2
14 df-2 12185 . . . . . . . . 9 2 = (1 + 1)
1513, 14eqtri 2754 . . . . . . . 8 (♯‘⟨“𝑋𝑌”⟩) = (1 + 1)
1615oveq2i 7357 . . . . . . 7 (0..^(♯‘⟨“𝑋𝑌”⟩)) = (0..^(1 + 1))
177, 12, 163eqtr4i 2764 . . . . . 6 (0...(♯‘𝐹)) = (0..^(♯‘⟨“𝑋𝑌”⟩))
1817a1i 11 . . . . 5 (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 → (0...(♯‘𝐹)) = (0..^(♯‘⟨“𝑋𝑌”⟩)))
1918feq2d 6635 . . . 4 (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 → (⟨“𝑋𝑌”⟩:(0...(♯‘𝐹))⟶𝑉 ↔ ⟨“𝑋𝑌”⟩:(0..^(♯‘⟨“𝑋𝑌”⟩))⟶𝑉))
204, 19mpbird 257 . . 3 (⟨“𝑋𝑌”⟩ ∈ Word 𝑉 → ⟨“𝑋𝑌”⟩:(0...(♯‘𝐹))⟶𝑉)
213, 20syl 17 . 2 (𝜑 → ⟨“𝑋𝑌”⟩:(0...(♯‘𝐹))⟶𝑉)
22 1wlkd.p . . 3 𝑃 = ⟨“𝑋𝑌”⟩
2322feq1i 6642 . 2 (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ ⟨“𝑋𝑌”⟩:(0...(♯‘𝐹))⟶𝑉)
2421, 23sylibr 234 1 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  2c2 12177  cz 12465  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417  ⟨“cs1 14500  ⟨“cs2 14745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752
This theorem is referenced by:  1wlkd  30116
  Copyright terms: Public domain W3C validator