Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1wlkdlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for 1wlkd 28505. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
1wlkdlem1 | ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | 1wlkd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
3 | 1, 2 | s2cld 14584 | . . 3 ⊢ (𝜑 → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
4 | wrdf 14222 | . . . 4 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → 〈“𝑋𝑌”〉:(0..^(♯‘〈“𝑋𝑌”〉))⟶𝑉) | |
5 | 1z 12350 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
6 | fzval3 13456 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (0...1) = (0..^(1 + 1))) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (0...1) = (0..^(1 + 1)) |
8 | 1wlkd.f | . . . . . . . . . 10 ⊢ 𝐹 = 〈“𝐽”〉 | |
9 | 8 | fveq2i 6777 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) |
10 | s1len 14311 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽”〉) = 1 | |
11 | 9, 10 | eqtri 2766 | . . . . . . . 8 ⊢ (♯‘𝐹) = 1 |
12 | 11 | oveq2i 7286 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...1) |
13 | s2len 14602 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
14 | df-2 12036 | . . . . . . . . 9 ⊢ 2 = (1 + 1) | |
15 | 13, 14 | eqtri 2766 | . . . . . . . 8 ⊢ (♯‘〈“𝑋𝑌”〉) = (1 + 1) |
16 | 15 | oveq2i 7286 | . . . . . . 7 ⊢ (0..^(♯‘〈“𝑋𝑌”〉)) = (0..^(1 + 1)) |
17 | 7, 12, 16 | 3eqtr4i 2776 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^(♯‘〈“𝑋𝑌”〉)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → (0...(♯‘𝐹)) = (0..^(♯‘〈“𝑋𝑌”〉))) |
19 | 18 | feq2d 6586 | . . . 4 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → (〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉 ↔ 〈“𝑋𝑌”〉:(0..^(♯‘〈“𝑋𝑌”〉))⟶𝑉)) |
20 | 4, 19 | mpbird 256 | . . 3 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
21 | 3, 20 | syl 17 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
22 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
23 | 22 | feq1i 6591 | . 2 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
24 | 21, 23 | sylibr 233 | 1 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 + caddc 10874 2c2 12028 ℤcz 12319 ...cfz 13239 ..^cfzo 13382 ♯chash 14044 Word cword 14217 〈“cs1 14300 〈“cs2 14554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-s1 14301 df-s2 14561 |
This theorem is referenced by: 1wlkd 28505 |
Copyright terms: Public domain | W3C validator |