![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1wlkdlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for 1wlkd 27602. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
1wlkdlem1 | ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | 1wlkd.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
3 | 1, 2 | s2cld 14069 | . . 3 ⊢ (𝜑 → 〈“𝑋𝑌”〉 ∈ Word 𝑉) |
4 | wrdf 13712 | . . . 4 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → 〈“𝑋𝑌”〉:(0..^(♯‘〈“𝑋𝑌”〉))⟶𝑉) | |
5 | 1z 11862 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
6 | fzval3 12956 | . . . . . . . 8 ⊢ (1 ∈ ℤ → (0...1) = (0..^(1 + 1))) | |
7 | 5, 6 | ax-mp 5 | . . . . . . 7 ⊢ (0...1) = (0..^(1 + 1)) |
8 | 1wlkd.f | . . . . . . . . . 10 ⊢ 𝐹 = 〈“𝐽”〉 | |
9 | 8 | fveq2i 6544 | . . . . . . . . 9 ⊢ (♯‘𝐹) = (♯‘〈“𝐽”〉) |
10 | s1len 13804 | . . . . . . . . 9 ⊢ (♯‘〈“𝐽”〉) = 1 | |
11 | 9, 10 | eqtri 2818 | . . . . . . . 8 ⊢ (♯‘𝐹) = 1 |
12 | 11 | oveq2i 7030 | . . . . . . 7 ⊢ (0...(♯‘𝐹)) = (0...1) |
13 | s2len 14087 | . . . . . . . . 9 ⊢ (♯‘〈“𝑋𝑌”〉) = 2 | |
14 | df-2 11550 | . . . . . . . . 9 ⊢ 2 = (1 + 1) | |
15 | 13, 14 | eqtri 2818 | . . . . . . . 8 ⊢ (♯‘〈“𝑋𝑌”〉) = (1 + 1) |
16 | 15 | oveq2i 7030 | . . . . . . 7 ⊢ (0..^(♯‘〈“𝑋𝑌”〉)) = (0..^(1 + 1)) |
17 | 7, 12, 16 | 3eqtr4i 2828 | . . . . . 6 ⊢ (0...(♯‘𝐹)) = (0..^(♯‘〈“𝑋𝑌”〉)) |
18 | 17 | a1i 11 | . . . . 5 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → (0...(♯‘𝐹)) = (0..^(♯‘〈“𝑋𝑌”〉))) |
19 | 18 | feq2d 6371 | . . . 4 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → (〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉 ↔ 〈“𝑋𝑌”〉:(0..^(♯‘〈“𝑋𝑌”〉))⟶𝑉)) |
20 | 4, 19 | mpbird 258 | . . 3 ⊢ (〈“𝑋𝑌”〉 ∈ Word 𝑉 → 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
21 | 3, 20 | syl 17 | . 2 ⊢ (𝜑 → 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
22 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
23 | 22 | feq1i 6376 | . 2 ⊢ (𝑃:(0...(♯‘𝐹))⟶𝑉 ↔ 〈“𝑋𝑌”〉:(0...(♯‘𝐹))⟶𝑉) |
24 | 21, 23 | sylibr 235 | 1 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2080 ⟶wf 6224 ‘cfv 6228 (class class class)co 7019 0cc0 10386 1c1 10387 + caddc 10389 2c2 11542 ℤcz 11831 ...cfz 12742 ..^cfzo 12883 ♯chash 13540 Word cword 13707 〈“cs1 13793 〈“cs2 14039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1778 ax-4 1792 ax-5 1889 ax-6 1948 ax-7 1993 ax-8 2082 ax-9 2090 ax-10 2111 ax-11 2125 ax-12 2140 ax-13 2343 ax-ext 2768 ax-rep 5084 ax-sep 5097 ax-nul 5104 ax-pow 5160 ax-pr 5224 ax-un 7322 ax-cnex 10442 ax-resscn 10443 ax-1cn 10444 ax-icn 10445 ax-addcl 10446 ax-addrcl 10447 ax-mulcl 10448 ax-mulrcl 10449 ax-mulcom 10450 ax-addass 10451 ax-mulass 10452 ax-distr 10453 ax-i2m1 10454 ax-1ne0 10455 ax-1rid 10456 ax-rnegex 10457 ax-rrecex 10458 ax-cnre 10459 ax-pre-lttri 10460 ax-pre-lttrn 10461 ax-pre-ltadd 10462 ax-pre-mulgt0 10463 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1763 df-nf 1767 df-sb 2042 df-mo 2575 df-eu 2611 df-clab 2775 df-cleq 2787 df-clel 2862 df-nfc 2934 df-ne 2984 df-nel 3090 df-ral 3109 df-rex 3110 df-reu 3111 df-rab 3113 df-v 3438 df-sbc 3708 df-csb 3814 df-dif 3864 df-un 3866 df-in 3868 df-ss 3876 df-pss 3878 df-nul 4214 df-if 4384 df-pw 4457 df-sn 4475 df-pr 4477 df-tp 4479 df-op 4481 df-uni 4748 df-int 4785 df-iun 4829 df-br 4965 df-opab 5027 df-mpt 5044 df-tr 5067 df-id 5351 df-eprel 5356 df-po 5365 df-so 5366 df-fr 5405 df-we 5407 df-xp 5452 df-rel 5453 df-cnv 5454 df-co 5455 df-dm 5456 df-rn 5457 df-res 5458 df-ima 5459 df-pred 6026 df-ord 6072 df-on 6073 df-lim 6074 df-suc 6075 df-iota 6192 df-fun 6230 df-fn 6231 df-f 6232 df-f1 6233 df-fo 6234 df-f1o 6235 df-fv 6236 df-riota 6980 df-ov 7022 df-oprab 7023 df-mpo 7024 df-om 7440 df-1st 7548 df-2nd 7549 df-wrecs 7801 df-recs 7863 df-rdg 7901 df-1o 7956 df-oadd 7960 df-er 8142 df-en 8361 df-dom 8362 df-sdom 8363 df-fin 8364 df-card 9217 df-pnf 10526 df-mnf 10527 df-xr 10528 df-ltxr 10529 df-le 10530 df-sub 10721 df-neg 10722 df-nn 11489 df-2 11550 df-n0 11748 df-z 11832 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-concat 13769 df-s1 13794 df-s2 14046 |
This theorem is referenced by: 1wlkd 27602 |
Copyright terms: Public domain | W3C validator |