![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1wlkdlem3 | Structured version Visualization version GIF version |
Description: Lemma 3 for 1wlkd 30071. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
Ref | Expression |
---|---|
1wlkdlem3 | ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
2 | 1wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽”〉 | |
3 | 1wlkd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | 1wlkd.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
6 | 1wlkd.j | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
7 | 1, 2, 3, 4, 5, 6 | 1wlkdlem2 30068 | . 2 ⊢ (𝜑 → 𝑋 ∈ (𝐼‘𝐽)) |
8 | elfvdm 6930 | . 2 ⊢ (𝑋 ∈ (𝐼‘𝐽) → 𝐽 ∈ dom 𝐼) | |
9 | s1cl 14605 | . . 3 ⊢ (𝐽 ∈ dom 𝐼 → 〈“𝐽”〉 ∈ Word dom 𝐼) | |
10 | 2, 9 | eqeltrid 2830 | . 2 ⊢ (𝐽 ∈ dom 𝐼 → 𝐹 ∈ Word dom 𝐼) |
11 | 7, 8, 10 | 3syl 18 | 1 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ⊆ wss 3946 {csn 4623 {cpr 4625 dom cdm 5674 ‘cfv 6546 Word cword 14517 〈“cs1 14598 〈“cs2 14845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-n0 12519 df-z 12605 df-uz 12869 df-fz 13533 df-fzo 13676 df-word 14518 df-s1 14599 |
This theorem is referenced by: 1wlkd 30071 |
Copyright terms: Public domain | W3C validator |