| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1wlkd | Structured version Visualization version GIF version | ||
| Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
| Ref | Expression |
|---|---|
| 1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| 1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
| 1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
| 1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
| 1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| 1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| 1wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
| 2 | 1wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽”〉 | |
| 3 | 1wlkd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 4 | 1wlkd.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
| 6 | 1wlkd.j | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
| 7 | 1, 2, 3, 4, 5, 6 | 1wlkdlem3 30105 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 8 | 1, 2, 3, 4 | 1wlkdlem1 30103 | . 2 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 9 | 1, 2, 3, 4, 5, 6 | 1wlkdlem4 30106 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 10 | 1wlkd.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | 1vgrex 28966 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝐺 ∈ V) |
| 12 | 1wlkd.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | 10, 12 | iswlkg 29578 | . . 3 ⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 14 | 3, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 15 | 7, 8, 9, 14 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 if-wif 1062 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 Vcvv 3464 ⊆ wss 3933 {csn 4608 {cpr 4610 class class class wbr 5125 dom cdm 5667 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 ...cfz 13530 ..^cfzo 13677 ♯chash 14352 Word cword 14535 〈“cs1 14616 〈“cs2 14863 Vtxcvtx 28960 iEdgciedg 28961 Walkscwlks 29561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-wlks 29564 |
| This theorem is referenced by: 1trld 30108 1pthond 30110 upgr1wlkd 30113 |
| Copyright terms: Public domain | W3C validator |