Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1wlkd | Structured version Visualization version GIF version |
Description: In a graph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a walk. The two vertices need not be distinct (in the case of a loop). (Contributed by AV, 22-Jan-2021.) (Revised by AV, 23-Mar-2021.) |
Ref | Expression |
---|---|
1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
1wlkd.l | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) |
1wlkd.j | ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) |
1wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
1wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
1wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1wlkd.p | . . 3 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
2 | 1wlkd.f | . . 3 ⊢ 𝐹 = 〈“𝐽”〉 | |
3 | 1wlkd.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
4 | 1wlkd.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | 1wlkd.l | . . 3 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐼‘𝐽) = {𝑋}) | |
6 | 1wlkd.j | . . 3 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ (𝐼‘𝐽)) | |
7 | 1, 2, 3, 4, 5, 6 | 1wlkdlem3 28791 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
8 | 1, 2, 3, 4 | 1wlkdlem1 28789 | . 2 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
9 | 1, 2, 3, 4, 5, 6 | 1wlkdlem4 28792 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
10 | 1wlkd.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
11 | 10 | 1vgrex 27661 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝐺 ∈ V) |
12 | 1wlkd.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
13 | 10, 12 | iswlkg 28269 | . . 3 ⊢ (𝐺 ∈ V → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
14 | 3, 11, 13 | 3syl 18 | . 2 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
15 | 7, 8, 9, 14 | mpbir3and 1342 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 if-wif 1061 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 Vcvv 3442 ⊆ wss 3902 {csn 4578 {cpr 4580 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 0cc0 10977 1c1 10978 + caddc 10980 ...cfz 13345 ..^cfzo 13488 ♯chash 14150 Word cword 14322 〈“cs1 14403 〈“cs2 14654 Vtxcvtx 27655 iEdgciedg 27656 Walkscwlks 28252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-concat 14379 df-s1 14404 df-s2 14661 df-wlks 28255 |
This theorem is referenced by: 1trld 28794 1pthond 28796 upgr1wlkd 28799 |
Copyright terms: Public domain | W3C validator |