| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2arwcatlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for 2arwcat 49338. (Contributed by Zhi Wang, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| 2arwcatlem2.a | ⊢ (𝜑 → 𝐴 = 𝑋) |
| 2arwcatlem2.b | ⊢ (𝜑 → 𝐵 = 𝑌) |
| 2arwcatlem2.c | ⊢ (𝜑 → 𝐶 = 𝑍) |
| 2arwcatlem2.f | ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) |
| 2arwcatlem2.1 | ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) |
| 2arwcatlem3.0 | ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) |
| Ref | Expression |
|---|---|
| 2arwcatlem3 | ⊢ (𝜑 → (𝐹(〈𝐴, 𝐵〉 · 𝐶) 1 ) = 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2arwcatlem2.a | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝑋) | |
| 2 | 2arwcatlem2.b | . . . . 5 ⊢ (𝜑 → 𝐵 = 𝑌) | |
| 3 | 1, 2 | opeq12d 4855 | . . . 4 ⊢ (𝜑 → 〈𝐴, 𝐵〉 = 〈𝑋, 𝑌〉) |
| 4 | 2arwcatlem2.c | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑍) | |
| 5 | 3, 4 | oveq12d 7418 | . . 3 ⊢ (𝜑 → (〈𝐴, 𝐵〉 · 𝐶) = (〈𝑋, 𝑌〉 · 𝑍)) |
| 6 | 5 | oveqd 7417 | . 2 ⊢ (𝜑 → (𝐹(〈𝐴, 𝐵〉 · 𝐶) 1 ) = (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 )) |
| 7 | 2arwcatlem3.0 | . . . . 5 ⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) | |
| 8 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 = 0 ) → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) |
| 9 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 = 0 ) → 𝐹 = 0 ) | |
| 10 | 9 | oveq1d 7415 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 = 0 ) → (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 ) = ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 )) |
| 11 | 8, 10, 9 | 3eqtr4d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝐹 = 0 ) → (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 ) = 𝐹) |
| 12 | 2arwcatlem2.1 | . . . . 5 ⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 = 1 ) → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) |
| 14 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐹 = 1 ) → 𝐹 = 1 ) | |
| 15 | 14 | oveq1d 7415 | . . . 4 ⊢ ((𝜑 ∧ 𝐹 = 1 ) → (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 ) = ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 )) |
| 16 | 13, 15, 14 | 3eqtr4d 2779 | . . 3 ⊢ ((𝜑 ∧ 𝐹 = 1 ) → (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 ) = 𝐹) |
| 17 | 2arwcatlem2.f | . . 3 ⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) | |
| 18 | 11, 16, 17 | mpjaodan 960 | . 2 ⊢ (𝜑 → (𝐹(〈𝑋, 𝑌〉 · 𝑍) 1 ) = 𝐹) |
| 19 | 6, 18 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝐹(〈𝐴, 𝐵〉 · 𝐶) 1 ) = 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1539 〈cop 4605 (class class class)co 7400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-iota 6481 df-fv 6536 df-ov 7403 |
| This theorem is referenced by: 2arwcat 49338 |
| Copyright terms: Public domain | W3C validator |