Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arwcatlem3 Structured version   Visualization version   GIF version

Theorem 2arwcatlem3 49576
Description: Lemma for 2arwcat 49579. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
2arwcatlem2.a (𝜑𝐴 = 𝑋)
2arwcatlem2.b (𝜑𝐵 = 𝑌)
2arwcatlem2.c (𝜑𝐶 = 𝑍)
2arwcatlem2.f (𝜑 → (𝐹 = 0𝐹 = 1 ))
2arwcatlem2.1 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
2arwcatlem3.0 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
Assertion
Ref Expression
2arwcatlem3 (𝜑 → (𝐹(⟨𝐴, 𝐵· 𝐶) 1 ) = 𝐹)

Proof of Theorem 2arwcatlem3
StepHypRef Expression
1 2arwcatlem2.a . . . . 5 (𝜑𝐴 = 𝑋)
2 2arwcatlem2.b . . . . 5 (𝜑𝐵 = 𝑌)
31, 2opeq12d 4847 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ = ⟨𝑋, 𝑌⟩)
4 2arwcatlem2.c . . . 4 (𝜑𝐶 = 𝑍)
53, 4oveq12d 7407 . . 3 (𝜑 → (⟨𝐴, 𝐵· 𝐶) = (⟨𝑋, 𝑌· 𝑍))
65oveqd 7406 . 2 (𝜑 → (𝐹(⟨𝐴, 𝐵· 𝐶) 1 ) = (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ))
7 2arwcatlem3.0 . . . . 5 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
87adantr 480 . . . 4 ((𝜑𝐹 = 0 ) → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
9 simpr 484 . . . . 5 ((𝜑𝐹 = 0 ) → 𝐹 = 0 )
109oveq1d 7404 . . . 4 ((𝜑𝐹 = 0 ) → (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ) = ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ))
118, 10, 93eqtr4d 2775 . . 3 ((𝜑𝐹 = 0 ) → (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ) = 𝐹)
12 2arwcatlem2.1 . . . . 5 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
1312adantr 480 . . . 4 ((𝜑𝐹 = 1 ) → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
14 simpr 484 . . . . 5 ((𝜑𝐹 = 1 ) → 𝐹 = 1 )
1514oveq1d 7404 . . . 4 ((𝜑𝐹 = 1 ) → (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ) = ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ))
1613, 15, 143eqtr4d 2775 . . 3 ((𝜑𝐹 = 1 ) → (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ) = 𝐹)
17 2arwcatlem2.f . . 3 (𝜑 → (𝐹 = 0𝐹 = 1 ))
1811, 16, 17mpjaodan 960 . 2 (𝜑 → (𝐹(⟨𝑋, 𝑌· 𝑍) 1 ) = 𝐹)
196, 18eqtrd 2765 1 (𝜑 → (𝐹(⟨𝐴, 𝐵· 𝐶) 1 ) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  cop 4597  (class class class)co 7389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-iota 6466  df-fv 6521  df-ov 7392
This theorem is referenced by:  2arwcat  49579
  Copyright terms: Public domain W3C validator