Proof of Theorem 2arwcatlem4
| Step | Hyp | Ref
| Expression |
| 1 | | 2arwcatlem2.a |
. . . . 5
⊢ (𝜑 → 𝐴 = 𝑋) |
| 2 | | 2arwcatlem2.b |
. . . . 5
⊢ (𝜑 → 𝐵 = 𝑌) |
| 3 | 1, 2 | opeq12d 4855 |
. . . 4
⊢ (𝜑 → 〈𝐴, 𝐵〉 = 〈𝑋, 𝑌〉) |
| 4 | | 2arwcatlem2.c |
. . . 4
⊢ (𝜑 → 𝐶 = 𝑍) |
| 5 | 3, 4 | oveq12d 7418 |
. . 3
⊢ (𝜑 → (〈𝐴, 𝐵〉 · 𝐶) = (〈𝑋, 𝑌〉 · 𝑍)) |
| 6 | 5 | oveqd 7417 |
. 2
⊢ (𝜑 → (𝐺(〈𝐴, 𝐵〉 · 𝐶)𝐹) = (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹)) |
| 7 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 ) |
| 8 | | simplr 768 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐹 = 0 ) |
| 9 | 7, 8 | oveq12d 7418 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ( 0 (〈𝑋, 𝑌〉 · 𝑍) 0 )) |
| 10 | | 2arwcatlem4.00 |
. . . . . 6
⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 0 ) ∈ { 0 , 1
}) |
| 11 | 10 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 0 ) ∈ { 0 , 1
}) |
| 12 | 9, 11 | eqeltrd 2833 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 13 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 ) |
| 14 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐹 = 0 ) |
| 15 | 13, 14 | oveq12d 7418 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 )) |
| 16 | | 2arwcatlem4.0 |
. . . . . . 7
⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) |
| 17 | 16 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) = 0 ) |
| 18 | 15, 17 | eqtrd 2769 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = 0 ) |
| 19 | | ovex 7433 |
. . . . . . . 8
⊢ ( 1 (〈𝑋, 𝑌〉 · 𝑍) 0 ) ∈
V |
| 20 | 16, 19 | eqeltrrdi 2842 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ V) |
| 21 | | prid1g 4734 |
. . . . . . 7
⊢ ( 0 ∈ V
→ 0
∈ { 0 , 1 }) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝜑 → 0 ∈ { 0 , 1
}) |
| 23 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → 0 ∈ {
0 , 1
}) |
| 24 | 18, 23 | eqeltrd 2833 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 25 | | 2arwcatlem4.g |
. . . . 5
⊢ (𝜑 → (𝐺 = 0 ∨ 𝐺 = 1 )) |
| 26 | 25 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 = 0 ) → (𝐺 = 0 ∨ 𝐺 = 1 )) |
| 27 | 12, 24, 26 | mpjaodan 960 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 28 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 ) |
| 29 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐹 = 1 ) |
| 30 | 28, 29 | oveq12d 7418 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 )) |
| 31 | | 2arwcatlem3.0 |
. . . . . . 7
⊢ (𝜑 → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) |
| 32 | 31 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 0 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 0 ) |
| 33 | 30, 32 | eqtrd 2769 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = 0 ) |
| 34 | 22 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → 0 ∈ {
0 , 1
}) |
| 35 | 33, 34 | eqeltrd 2833 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 36 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 ) |
| 37 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐹 = 1 ) |
| 38 | 36, 37 | oveq12d 7418 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 )) |
| 39 | | 2arwcatlem2.1 |
. . . . . . 7
⊢ (𝜑 → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) |
| 40 | 39 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) = 1 ) |
| 41 | 38, 40 | eqtrd 2769 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = 1 ) |
| 42 | | ovex 7433 |
. . . . . . . 8
⊢ ( 1 (〈𝑋, 𝑌〉 · 𝑍) 1 ) ∈
V |
| 43 | 39, 42 | eqeltrrdi 2842 |
. . . . . . 7
⊢ (𝜑 → 1 ∈ V) |
| 44 | | prid2g 4735 |
. . . . . . 7
⊢ ( 1 ∈ V
→ 1
∈ { 0 , 1 }) |
| 45 | 43, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → 1 ∈ { 0 , 1
}) |
| 46 | 45 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → 1 ∈ {
0 , 1
}) |
| 47 | 41, 46 | eqeltrd 2833 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 48 | 25 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 = 1 ) → (𝐺 = 0 ∨ 𝐺 = 1 )) |
| 49 | 35, 47, 48 | mpjaodan 960 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = 1 ) → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 50 | | 2arwcatlem2.f |
. . 3
⊢ (𝜑 → (𝐹 = 0 ∨ 𝐹 = 1 )) |
| 51 | 27, 49, 50 | mpjaodan 960 |
. 2
⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) ∈ { 0 , 1 }) |
| 52 | 6, 51 | eqeltrd 2833 |
1
⊢ (𝜑 → (𝐺(〈𝐴, 𝐵〉 · 𝐶)𝐹) ∈ { 0 , 1 }) |