Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arwcatlem4 Structured version   Visualization version   GIF version

Theorem 2arwcatlem4 49336
Description: Lemma for 2arwcat 49338. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
2arwcatlem2.a (𝜑𝐴 = 𝑋)
2arwcatlem2.b (𝜑𝐵 = 𝑌)
2arwcatlem2.c (𝜑𝐶 = 𝑍)
2arwcatlem2.f (𝜑 → (𝐹 = 0𝐹 = 1 ))
2arwcatlem2.1 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
2arwcatlem3.0 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
2arwcatlem4.0 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 0 ) = 0 )
2arwcatlem4.00 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 0 ) ∈ { 0 , 1 })
2arwcatlem4.g (𝜑 → (𝐺 = 0𝐺 = 1 ))
Assertion
Ref Expression
2arwcatlem4 (𝜑 → (𝐺(⟨𝐴, 𝐵· 𝐶)𝐹) ∈ { 0 , 1 })

Proof of Theorem 2arwcatlem4
StepHypRef Expression
1 2arwcatlem2.a . . . . 5 (𝜑𝐴 = 𝑋)
2 2arwcatlem2.b . . . . 5 (𝜑𝐵 = 𝑌)
31, 2opeq12d 4855 . . . 4 (𝜑 → ⟨𝐴, 𝐵⟩ = ⟨𝑋, 𝑌⟩)
4 2arwcatlem2.c . . . 4 (𝜑𝐶 = 𝑍)
53, 4oveq12d 7418 . . 3 (𝜑 → (⟨𝐴, 𝐵· 𝐶) = (⟨𝑋, 𝑌· 𝑍))
65oveqd 7417 . 2 (𝜑 → (𝐺(⟨𝐴, 𝐵· 𝐶)𝐹) = (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹))
7 simpr 484 . . . . . 6 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 )
8 simplr 768 . . . . . 6 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 0 ) → 𝐹 = 0 )
97, 8oveq12d 7418 . . . . 5 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = ( 0 (⟨𝑋, 𝑌· 𝑍) 0 ))
10 2arwcatlem4.00 . . . . . 6 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 0 ) ∈ { 0 , 1 })
1110ad2antrr 726 . . . . 5 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 0 ) → ( 0 (⟨𝑋, 𝑌· 𝑍) 0 ) ∈ { 0 , 1 })
129, 11eqeltrd 2833 . . . 4 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
13 simpr 484 . . . . . . 7 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 )
14 simplr 768 . . . . . . 7 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → 𝐹 = 0 )
1513, 14oveq12d 7418 . . . . . 6 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = ( 1 (⟨𝑋, 𝑌· 𝑍) 0 ))
16 2arwcatlem4.0 . . . . . . 7 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 0 ) = 0 )
1716ad2antrr 726 . . . . . 6 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → ( 1 (⟨𝑋, 𝑌· 𝑍) 0 ) = 0 )
1815, 17eqtrd 2769 . . . . 5 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = 0 )
19 ovex 7433 . . . . . . . 8 ( 1 (⟨𝑋, 𝑌· 𝑍) 0 ) ∈ V
2016, 19eqeltrrdi 2842 . . . . . . 7 (𝜑0 ∈ V)
21 prid1g 4734 . . . . . . 7 ( 0 ∈ V → 0 ∈ { 0 , 1 })
2220, 21syl 17 . . . . . 6 (𝜑0 ∈ { 0 , 1 })
2322ad2antrr 726 . . . . 5 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → 0 ∈ { 0 , 1 })
2418, 23eqeltrd 2833 . . . 4 (((𝜑𝐹 = 0 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
25 2arwcatlem4.g . . . . 5 (𝜑 → (𝐺 = 0𝐺 = 1 ))
2625adantr 480 . . . 4 ((𝜑𝐹 = 0 ) → (𝐺 = 0𝐺 = 1 ))
2712, 24, 26mpjaodan 960 . . 3 ((𝜑𝐹 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
28 simpr 484 . . . . . . 7 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐺 = 0 )
29 simplr 768 . . . . . . 7 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → 𝐹 = 1 )
3028, 29oveq12d 7418 . . . . . 6 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ))
31 2arwcatlem3.0 . . . . . . 7 (𝜑 → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
3231ad2antrr 726 . . . . . 6 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → ( 0 (⟨𝑋, 𝑌· 𝑍) 1 ) = 0 )
3330, 32eqtrd 2769 . . . . 5 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = 0 )
3422ad2antrr 726 . . . . 5 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → 0 ∈ { 0 , 1 })
3533, 34eqeltrd 2833 . . . 4 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 0 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
36 simpr 484 . . . . . . 7 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐺 = 1 )
37 simplr 768 . . . . . . 7 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → 𝐹 = 1 )
3836, 37oveq12d 7418 . . . . . 6 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ))
39 2arwcatlem2.1 . . . . . . 7 (𝜑 → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
4039ad2antrr 726 . . . . . 6 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) = 1 )
4138, 40eqtrd 2769 . . . . 5 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) = 1 )
42 ovex 7433 . . . . . . . 8 ( 1 (⟨𝑋, 𝑌· 𝑍) 1 ) ∈ V
4339, 42eqeltrrdi 2842 . . . . . . 7 (𝜑1 ∈ V)
44 prid2g 4735 . . . . . . 7 ( 1 ∈ V → 1 ∈ { 0 , 1 })
4543, 44syl 17 . . . . . 6 (𝜑1 ∈ { 0 , 1 })
4645ad2antrr 726 . . . . 5 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → 1 ∈ { 0 , 1 })
4741, 46eqeltrd 2833 . . . 4 (((𝜑𝐹 = 1 ) ∧ 𝐺 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
4825adantr 480 . . . 4 ((𝜑𝐹 = 1 ) → (𝐺 = 0𝐺 = 1 ))
4935, 47, 48mpjaodan 960 . . 3 ((𝜑𝐹 = 1 ) → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
50 2arwcatlem2.f . . 3 (𝜑 → (𝐹 = 0𝐹 = 1 ))
5127, 49, 50mpjaodan 960 . 2 (𝜑 → (𝐺(⟨𝑋, 𝑌· 𝑍)𝐹) ∈ { 0 , 1 })
526, 51eqeltrd 2833 1 (𝜑 → (𝐺(⟨𝐴, 𝐵· 𝐶)𝐹) ∈ { 0 , 1 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  Vcvv 3457  {cpr 4601  cop 4605  (class class class)co 7400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5274
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-br 5118  df-iota 6481  df-fv 6536  df-ov 7403
This theorem is referenced by:  2arwcat  49338
  Copyright terms: Public domain W3C validator