Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2arwcat Structured version   Visualization version   GIF version

Theorem 2arwcat 49338
Description: The condition for a structure with at most one object and at most two morphisms being a category. "2arwcat.2" to "2arwcat.5" are also necessary conditions if 𝑋, 0, and 1 are all sets, due to catlid 17682, catrid 17683, and catcocl 17684. (Contributed by Zhi Wang, 5-Nov-2025.)
Hypotheses
Ref Expression
2arwcat.b (𝜑 → {𝑋} = (Base‘𝐶))
2arwcat.h (𝜑𝐻 = (Hom ‘𝐶))
2arwcat.x (𝜑· = (comp‘𝐶))
2arwcat.1 (𝑋𝐻𝑋) = { 0 , 1 }
2arwcat.2 (𝜑 → ( 1 (⟨𝑋, 𝑋· 𝑋) 1 ) = 1 )
2arwcat.3 (𝜑 → ( 1 (⟨𝑋, 𝑋· 𝑋) 0 ) = 0 )
2arwcat.4 (𝜑 → ( 0 (⟨𝑋, 𝑋· 𝑋) 1 ) = 0 )
2arwcat.5 (𝜑 → ( 0 (⟨𝑋, 𝑋· 𝑋) 0 ) ∈ { 0 , 1 })
Assertion
Ref Expression
2arwcat (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 1 )))
Distinct variable groups:   𝑦, ·   𝑦,𝐶   𝑦,𝐻   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   1 (𝑦)   0 (𝑦)

Proof of Theorem 2arwcat
Dummy variables 𝑓 𝑔 𝑘 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2arwcat.b . 2 (𝜑 → {𝑋} = (Base‘𝐶))
2 2arwcat.h . 2 (𝜑𝐻 = (Hom ‘𝐶))
3 2arwcat.x . 2 (𝜑· = (comp‘𝐶))
4 2arwcat.2 . . . . . . 7 (𝜑 → ( 1 (⟨𝑋, 𝑋· 𝑋) 1 ) = 1 )
5 ovex 7433 . . . . . . 7 ( 1 (⟨𝑋, 𝑋· 𝑋) 1 ) ∈ V
64, 5eqeltrrdi 2842 . . . . . 6 (𝜑1 ∈ V)
7 prid2g 4735 . . . . . 6 ( 1 ∈ V → 1 ∈ { 0 , 1 })
86, 7syl 17 . . . . 5 (𝜑1 ∈ { 0 , 1 })
9 2arwcat.1 . . . . 5 (𝑋𝐻𝑋) = { 0 , 1 }
108, 9eleqtrrdi 2844 . . . 4 (𝜑1 ∈ (𝑋𝐻𝑋))
11 df-ov 7403 . . . . 5 (𝑋𝐻𝑋) = (𝐻‘⟨𝑋, 𝑋⟩)
122fveq1d 6875 . . . . 5 (𝜑 → (𝐻‘⟨𝑋, 𝑋⟩) = ((Hom ‘𝐶)‘⟨𝑋, 𝑋⟩))
1311, 12eqtrid 2781 . . . 4 (𝜑 → (𝑋𝐻𝑋) = ((Hom ‘𝐶)‘⟨𝑋, 𝑋⟩))
1410, 13eleqtrd 2835 . . 3 (𝜑1 ∈ ((Hom ‘𝐶)‘⟨𝑋, 𝑋⟩))
15 elfv2ex 6919 . . 3 ( 1 ∈ ((Hom ‘𝐶)‘⟨𝑋, 𝑋⟩) → 𝐶 ∈ V)
1614, 15syl 17 . 2 (𝜑𝐶 ∈ V)
1792arwcatlem1 49333 . 2 ((((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤))))
188adantr 480 . . 3 ((𝜑𝑦 ∈ {𝑋}) → 1 ∈ { 0 , 1 })
19 velsn 4615 . . . . 5 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
20 id 22 . . . . . . 7 (𝑦 = 𝑋𝑦 = 𝑋)
2120, 20oveq12d 7418 . . . . . 6 (𝑦 = 𝑋 → (𝑦𝐻𝑦) = (𝑋𝐻𝑋))
2221, 9eqtrdi 2785 . . . . 5 (𝑦 = 𝑋 → (𝑦𝐻𝑦) = { 0 , 1 })
2319, 22sylbi 217 . . . 4 (𝑦 ∈ {𝑋} → (𝑦𝐻𝑦) = { 0 , 1 })
2423adantl 481 . . 3 ((𝜑𝑦 ∈ {𝑋}) → (𝑦𝐻𝑦) = { 0 , 1 })
2518, 24eleqtrrd 2836 . 2 ((𝜑𝑦 ∈ {𝑋}) → 1 ∈ (𝑦𝐻𝑦))
26 simprll 778 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑥 = 𝑋𝑦 = 𝑋))
2726simpld 494 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑥 = 𝑋)
2826simprd 495 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑦 = 𝑋)
29 simprr1 1221 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑓 = 0𝑓 = 1 ))
304adantr 480 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑋, 𝑋· 𝑋) 1 ) = 1 )
31 2arwcat.3 . . . 4 (𝜑 → ( 1 (⟨𝑋, 𝑋· 𝑋) 0 ) = 0 )
3231adantr 480 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑋, 𝑋· 𝑋) 0 ) = 0 )
3327, 28, 28, 29, 30, 322arwcatlem2 49334 . 2 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑥, 𝑦· 𝑦)𝑓) = 𝑓)
34 simprlr 779 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑧 = 𝑋𝑤 = 𝑋))
3534simpld 494 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑧 = 𝑋)
36 simprr2 1222 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔 = 0𝑔 = 1 ))
37 2arwcat.4 . . . 4 (𝜑 → ( 0 (⟨𝑋, 𝑋· 𝑋) 1 ) = 0 )
3837adantr 480 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 0 (⟨𝑋, 𝑋· 𝑋) 1 ) = 0 )
3928, 28, 35, 36, 30, 382arwcatlem3 49335 . 2 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑦, 𝑦· 𝑧) 1 ) = 𝑔)
40 2arwcat.5 . . . . 5 (𝜑 → ( 0 (⟨𝑋, 𝑋· 𝑋) 0 ) ∈ { 0 , 1 })
4140adantr 480 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 0 (⟨𝑋, 𝑋· 𝑋) 0 ) ∈ { 0 , 1 })
4227, 28, 35, 29, 30, 38, 32, 41, 362arwcatlem4 49336 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ { 0 , 1 })
4327, 35oveq12d 7418 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑥𝐻𝑧) = (𝑋𝐻𝑋))
4443, 9eqtrdi 2785 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑥𝐻𝑧) = { 0 , 1 })
4542, 44eleqtrrd 2836 . 2 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) ∈ (𝑥𝐻𝑧))
4631, 37, 402arwcatlem5 49337 . . . . . . . 8 (𝜑 → (( 0 (⟨𝑋, 𝑋· 𝑋) 0 )(⟨𝑋, 𝑋· 𝑋) 0 ) = ( 0 (⟨𝑋, 𝑋· 𝑋)( 0 (⟨𝑋, 𝑋· 𝑋) 0 )))
4746ad4antr 732 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (( 0 (⟨𝑋, 𝑋· 𝑋) 0 )(⟨𝑋, 𝑋· 𝑋) 0 ) = ( 0 (⟨𝑋, 𝑋· 𝑋)( 0 (⟨𝑋, 𝑋· 𝑋) 0 )))
48 simpr 484 . . . . . . . . 9 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 )
49 simplr 768 . . . . . . . . 9 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑔 = 0 )
5048, 49oveq12d 7418 . . . . . . . 8 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = ( 0 (⟨𝑋, 𝑋· 𝑋) 0 ))
51 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) → 𝑓 = 0 )
5251ad2antrr 726 . . . . . . . 8 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑓 = 0 )
5350, 52oveq12d 7418 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (( 0 (⟨𝑋, 𝑋· 𝑋) 0 )(⟨𝑋, 𝑋· 𝑋) 0 ))
5449, 52oveq12d 7418 . . . . . . . 8 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = ( 0 (⟨𝑋, 𝑋· 𝑋) 0 ))
5548, 54oveq12d 7418 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = ( 0 (⟨𝑋, 𝑋· 𝑋)( 0 (⟨𝑋, 𝑋· 𝑋) 0 )))
5647, 53, 553eqtr4d 2779 . . . . . 6 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
57 eqidd 2735 . . . . . . . . 9 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑋 = 𝑋)
5827, 28opeq12d 4855 . . . . . . . . . . . . 13 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ⟨𝑥, 𝑦⟩ = ⟨𝑋, 𝑋⟩)
5958, 35oveq12d 7418 . . . . . . . . . . . 12 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (⟨𝑥, 𝑦· 𝑧) = (⟨𝑋, 𝑋· 𝑋))
6059oveqd 7417 . . . . . . . . . . 11 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑥, 𝑦· 𝑧)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
6160, 42eqeltrrd 2834 . . . . . . . . . 10 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) ∈ { 0 , 1 })
62 ovex 7433 . . . . . . . . . . 11 (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) ∈ V
6362elpr 4624 . . . . . . . . . 10 ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) ∈ { 0 , 1 } ↔ ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 0 ∨ (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 1 ))
6461, 63sylib 218 . . . . . . . . 9 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 0 ∨ (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 1 ))
6557, 57, 57, 64, 30, 322arwcatlem2 49334 . . . . . . . 8 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
6665ad3antrrr 730 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 (⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
67 simpr 484 . . . . . . . 8 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → 𝑘 = 1 )
6867oveq1d 7415 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = ( 1 (⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
6967oveq1d 7415 . . . . . . . . 9 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = ( 1 (⟨𝑋, 𝑋· 𝑋)𝑔))
7057, 57, 57, 36, 30, 322arwcatlem2 49334 . . . . . . . . . 10 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑔)
7170ad3antrrr 730 . . . . . . . . 9 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 (⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑔)
7269, 71eqtrd 2769 . . . . . . . 8 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑔)
7372oveq1d 7415 . . . . . . 7 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓))
7466, 68, 733eqtr4rd 2780 . . . . . 6 (((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
75 simprr3 1223 . . . . . . 7 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑘 = 0𝑘 = 1 ))
7675ad2antrr 726 . . . . . 6 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → (𝑘 = 0𝑘 = 1 ))
7756, 74, 76mpjaodan 960 . . . . 5 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
78 simpr 484 . . . . . . . . 9 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → 𝑔 = 1 )
7978oveq2d 7416 . . . . . . . 8 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = (𝑘(⟨𝑋, 𝑋· 𝑋) 1 ))
8057, 57, 57, 75, 30, 382arwcatlem3 49335 . . . . . . . . 9 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑘(⟨𝑋, 𝑋· 𝑋) 1 ) = 𝑘)
8180ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋) 1 ) = 𝑘)
8279, 81eqtrd 2769 . . . . . . 7 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 𝑘)
8382oveq1d 7415 . . . . . 6 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑓))
8478oveq1d 7415 . . . . . . . 8 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = ( 1 (⟨𝑋, 𝑋· 𝑋)𝑓))
8557, 57, 57, 29, 30, 322arwcatlem2 49334 . . . . . . . . 9 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ( 1 (⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
8685ad2antrr 726 . . . . . . . 8 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 1 (⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
8784, 86eqtrd 2769 . . . . . . 7 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑓)
8887oveq2d 7416 . . . . . 6 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑓))
8983, 88eqtr4d 2772 . . . . 5 ((((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
9036adantr 480 . . . . 5 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) → (𝑔 = 0𝑔 = 1 ))
9177, 89, 90mpjaodan 960 . . . 4 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 0 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
9257, 57, 57, 36, 30, 38, 32, 41, 752arwcatlem4 49336 . . . . . . . 8 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ { 0 , 1 })
93 ovex 7433 . . . . . . . . 9 (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ V
9493elpr 4624 . . . . . . . 8 ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) ∈ { 0 , 1 } ↔ ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 0 ∨ (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 1 ))
9592, 94sylib 218 . . . . . . 7 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 0 ∨ (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔) = 1 ))
9657, 57, 57, 95, 30, 382arwcatlem3 49335 . . . . . 6 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋) 1 ) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔))
9796adantr 480 . . . . 5 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋) 1 ) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔))
98 simpr 484 . . . . . 6 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → 𝑓 = 1 )
9998oveq2d 7416 . . . . 5 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋) 1 ))
10098oveq2d 7416 . . . . . . 7 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑔(⟨𝑋, 𝑋· 𝑋) 1 ))
10157, 57, 57, 36, 30, 382arwcatlem3 49335 . . . . . . . 8 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑔(⟨𝑋, 𝑋· 𝑋) 1 ) = 𝑔)
102101adantr 480 . . . . . . 7 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(⟨𝑋, 𝑋· 𝑋) 1 ) = 𝑔)
103100, 102eqtrd 2769 . . . . . 6 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(⟨𝑋, 𝑋· 𝑋)𝑓) = 𝑔)
104103oveq2d 7416 . . . . 5 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔))
10597, 99, 1043eqtr4d 2779 . . . 4 (((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
10691, 105, 29mpjaodan 960 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
10734simprd 495 . . . . 5 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑤 = 𝑋)
10858, 107oveq12d 7418 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (⟨𝑥, 𝑦· 𝑤) = (⟨𝑋, 𝑋· 𝑋))
10928, 35opeq12d 4855 . . . . . 6 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ⟨𝑦, 𝑧⟩ = ⟨𝑋, 𝑋⟩)
110109, 107oveq12d 7418 . . . . 5 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (⟨𝑦, 𝑧· 𝑤) = (⟨𝑋, 𝑋· 𝑋))
111110oveqd 7417 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑘(⟨𝑦, 𝑧· 𝑤)𝑔) = (𝑘(⟨𝑋, 𝑋· 𝑋)𝑔))
112 eqidd 2735 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑓 = 𝑓)
113108, 111, 112oveq123d 7421 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = ((𝑘(⟨𝑋, 𝑋· 𝑋)𝑔)(⟨𝑋, 𝑋· 𝑋)𝑓))
11427, 35opeq12d 4855 . . . . 5 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ⟨𝑥, 𝑧⟩ = ⟨𝑋, 𝑋⟩)
115114, 107oveq12d 7418 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (⟨𝑥, 𝑧· 𝑤) = (⟨𝑋, 𝑋· 𝑋))
116 eqidd 2735 . . . 4 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → 𝑘 = 𝑘)
117115, 116, 60oveq123d 7421 . . 3 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)) = (𝑘(⟨𝑋, 𝑋· 𝑋)(𝑔(⟨𝑋, 𝑋· 𝑋)𝑓)))
118106, 113, 1173eqtr4d 2779 . 2 ((𝜑 ∧ (((𝑥 = 𝑋𝑦 = 𝑋) ∧ (𝑧 = 𝑋𝑤 = 𝑋)) ∧ ((𝑓 = 0𝑓 = 1 ) ∧ (𝑔 = 0𝑔 = 1 ) ∧ (𝑘 = 0𝑘 = 1 )))) → ((𝑘(⟨𝑦, 𝑧· 𝑤)𝑔)(⟨𝑥, 𝑦· 𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧· 𝑤)(𝑔(⟨𝑥, 𝑦· 𝑧)𝑓)))
1191, 2, 3, 16, 17, 25, 33, 39, 45, 118iscatd2 17680 1 (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 1 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3457  {csn 4599  {cpr 4601  cop 4605  cmpt 5199  cfv 6528  (class class class)co 7400  Basecbs 17215  Hom chom 17269  compcco 17270  Catccat 17663  Idccid 17664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-id 5546  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-riota 7357  df-ov 7403  df-cat 17667  df-cid 17668
This theorem is referenced by:  incat  49339
  Copyright terms: Public domain W3C validator