| Step | Hyp | Ref
| Expression |
| 1 | | 2arwcat.b |
. 2
⊢ (𝜑 → {𝑋} = (Base‘𝐶)) |
| 2 | | 2arwcat.h |
. 2
⊢ (𝜑 → 𝐻 = (Hom ‘𝐶)) |
| 3 | | 2arwcat.x |
. 2
⊢ (𝜑 → · = (comp‘𝐶)) |
| 4 | | 2arwcat.2 |
. . . . . . 7
⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 1 ) |
| 5 | | ovex 7433 |
. . . . . . 7
⊢ ( 1 (〈𝑋, 𝑋〉 · 𝑋) 1 ) ∈
V |
| 6 | 4, 5 | eqeltrrdi 2842 |
. . . . . 6
⊢ (𝜑 → 1 ∈ V) |
| 7 | | prid2g 4735 |
. . . . . 6
⊢ ( 1 ∈ V
→ 1
∈ { 0 , 1 }) |
| 8 | 6, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 1 ∈ { 0 , 1
}) |
| 9 | | 2arwcat.1 |
. . . . 5
⊢ (𝑋𝐻𝑋) = { 0 , 1 } |
| 10 | 8, 9 | eleqtrrdi 2844 |
. . . 4
⊢ (𝜑 → 1 ∈ (𝑋𝐻𝑋)) |
| 11 | | df-ov 7403 |
. . . . 5
⊢ (𝑋𝐻𝑋) = (𝐻‘〈𝑋, 𝑋〉) |
| 12 | 2 | fveq1d 6875 |
. . . . 5
⊢ (𝜑 → (𝐻‘〈𝑋, 𝑋〉) = ((Hom ‘𝐶)‘〈𝑋, 𝑋〉)) |
| 13 | 11, 12 | eqtrid 2781 |
. . . 4
⊢ (𝜑 → (𝑋𝐻𝑋) = ((Hom ‘𝐶)‘〈𝑋, 𝑋〉)) |
| 14 | 10, 13 | eleqtrd 2835 |
. . 3
⊢ (𝜑 → 1 ∈ ((Hom ‘𝐶)‘〈𝑋, 𝑋〉)) |
| 15 | | elfv2ex 6919 |
. . 3
⊢ ( 1 ∈ ((Hom
‘𝐶)‘〈𝑋, 𝑋〉) → 𝐶 ∈ V) |
| 16 | 14, 15 | syl 17 |
. 2
⊢ (𝜑 → 𝐶 ∈ V) |
| 17 | 9 | 2arwcatlem1 49333 |
. 2
⊢ ((((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 ))) ↔ ((𝑥 ∈ {𝑋} ∧ 𝑦 ∈ {𝑋}) ∧ (𝑧 ∈ {𝑋} ∧ 𝑤 ∈ {𝑋}) ∧ (𝑓 ∈ (𝑥𝐻𝑦) ∧ 𝑔 ∈ (𝑦𝐻𝑧) ∧ 𝑘 ∈ (𝑧𝐻𝑤)))) |
| 18 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑋}) → 1 ∈ { 0 , 1
}) |
| 19 | | velsn 4615 |
. . . . 5
⊢ (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋) |
| 20 | | id 22 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → 𝑦 = 𝑋) |
| 21 | 20, 20 | oveq12d 7418 |
. . . . . 6
⊢ (𝑦 = 𝑋 → (𝑦𝐻𝑦) = (𝑋𝐻𝑋)) |
| 22 | 21, 9 | eqtrdi 2785 |
. . . . 5
⊢ (𝑦 = 𝑋 → (𝑦𝐻𝑦) = { 0 , 1 }) |
| 23 | 19, 22 | sylbi 217 |
. . . 4
⊢ (𝑦 ∈ {𝑋} → (𝑦𝐻𝑦) = { 0 , 1 }) |
| 24 | 23 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑋}) → (𝑦𝐻𝑦) = { 0 , 1 }) |
| 25 | 18, 24 | eleqtrrd 2836 |
. 2
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑋}) → 1 ∈ (𝑦𝐻𝑦)) |
| 26 | | simprll 778 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑥 = 𝑋 ∧ 𝑦 = 𝑋)) |
| 27 | 26 | simpld 494 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑥 = 𝑋) |
| 28 | 26 | simprd 495 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑦 = 𝑋) |
| 29 | | simprr1 1221 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑓 = 0 ∨ 𝑓 = 1 )) |
| 30 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 1 ) |
| 31 | | 2arwcat.3 |
. . . 4
⊢ (𝜑 → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 0 ) = 0 ) |
| 32 | 31 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑋, 𝑋〉 · 𝑋) 0 ) = 0 ) |
| 33 | 27, 28, 28, 29, 30, 32 | 2arwcatlem2 49334 |
. 2
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑥, 𝑦〉 · 𝑦)𝑓) = 𝑓) |
| 34 | | simprlr 779 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) |
| 35 | 34 | simpld 494 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑧 = 𝑋) |
| 36 | | simprr2 1222 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔 = 0 ∨ 𝑔 = 1 )) |
| 37 | | 2arwcat.4 |
. . . 4
⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 0 ) |
| 38 | 37 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 1 ) = 0 ) |
| 39 | 28, 28, 35, 36, 30, 38 | 2arwcatlem3 49335 |
. 2
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑦, 𝑦〉 · 𝑧) 1 ) = 𝑔) |
| 40 | | 2arwcat.5 |
. . . . 5
⊢ (𝜑 → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ) ∈ { 0 , 1
}) |
| 41 | 40 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ) ∈ { 0 , 1
}) |
| 42 | 27, 28, 35, 29, 30, 38, 32, 41, 36 | 2arwcatlem4 49336 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ { 0 , 1 }) |
| 43 | 27, 35 | oveq12d 7418 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑥𝐻𝑧) = (𝑋𝐻𝑋)) |
| 44 | 43, 9 | eqtrdi 2785 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑥𝐻𝑧) = { 0 , 1 }) |
| 45 | 42, 44 | eleqtrrd 2836 |
. 2
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) ∈ (𝑥𝐻𝑧)) |
| 46 | 31, 37, 40 | 2arwcatlem5 49337 |
. . . . . . . 8
⊢ (𝜑 → (( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 )(〈𝑋, 𝑋〉 · 𝑋) 0 ) = ( 0 (〈𝑋, 𝑋〉 · 𝑋)( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ))) |
| 47 | 46 | ad4antr 732 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 )(〈𝑋, 𝑋〉 · 𝑋) 0 ) = ( 0 (〈𝑋, 𝑋〉 · 𝑋)( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ))) |
| 48 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑘 = 0 ) |
| 49 | | simplr 768 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑔 = 0 ) |
| 50 | 48, 49 | oveq12d 7418 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 )) |
| 51 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) → 𝑓 = 0 ) |
| 52 | 51 | ad2antrr 726 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → 𝑓 = 0 ) |
| 53 | 50, 52 | oveq12d 7418 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 )(〈𝑋, 𝑋〉 · 𝑋) 0 )) |
| 54 | 49, 52 | oveq12d 7418 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = ( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 )) |
| 55 | 48, 54 | oveq12d 7418 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = ( 0 (〈𝑋, 𝑋〉 · 𝑋)( 0 (〈𝑋, 𝑋〉 · 𝑋) 0 ))) |
| 56 | 47, 53, 55 | 3eqtr4d 2779 |
. . . . . 6
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 0 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 57 | | eqidd 2735 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑋 = 𝑋) |
| 58 | 27, 28 | opeq12d 4855 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 〈𝑥, 𝑦〉 = 〈𝑋, 𝑋〉) |
| 59 | 58, 35 | oveq12d 7418 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (〈𝑥, 𝑦〉 · 𝑧) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 60 | 59 | oveqd 7417 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 61 | 60, 42 | eqeltrrd 2834 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) ∈ { 0 , 1 }) |
| 62 | | ovex 7433 |
. . . . . . . . . . 11
⊢ (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) ∈ V |
| 63 | 62 | elpr 4624 |
. . . . . . . . . 10
⊢ ((𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) ∈ { 0 , 1 } ↔ ((𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 0 ∨ (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 1 )) |
| 64 | 61, 63 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 0 ∨ (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 1 )) |
| 65 | 57, 57, 57, 64, 30, 32 | 2arwcatlem2 49334 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 66 | 65 | ad3antrrr 730 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 67 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → 𝑘 = 1 ) |
| 68 | 67 | oveq1d 7415 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = ( 1 (〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 69 | 67 | oveq1d 7415 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 70 | 57, 57, 57, 36, 30, 32 | 2arwcatlem2 49334 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑔) |
| 71 | 70 | ad3antrrr 730 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑔) |
| 72 | 69, 71 | eqtrd 2769 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑔) |
| 73 | 72 | oveq1d 7415 |
. . . . . . 7
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 74 | 66, 68, 73 | 3eqtr4rd 2780 |
. . . . . 6
⊢
(((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) ∧ 𝑘 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 75 | | simprr3 1223 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑘 = 0 ∨ 𝑘 = 1 )) |
| 76 | 75 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → (𝑘 = 0 ∨ 𝑘 = 1 )) |
| 77 | 56, 74, 76 | mpjaodan 960 |
. . . . 5
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 0 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 78 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → 𝑔 = 1 ) |
| 79 | 78 | oveq2d 7416 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = (𝑘(〈𝑋, 𝑋〉 · 𝑋) 1 )) |
| 80 | 57, 57, 57, 75, 30, 38 | 2arwcatlem3 49335 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑘(〈𝑋, 𝑋〉 · 𝑋) 1 ) = 𝑘) |
| 81 | 80 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋) 1 ) = 𝑘) |
| 82 | 79, 81 | eqtrd 2769 |
. . . . . . 7
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 𝑘) |
| 83 | 82 | oveq1d 7415 |
. . . . . 6
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 84 | 78 | oveq1d 7415 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 85 | 57, 57, 57, 29, 30, 32 | 2arwcatlem2 49334 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ( 1 (〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
| 87 | 84, 86 | eqtrd 2769 |
. . . . . . 7
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑓) |
| 88 | 87 | oveq2d 7416 |
. . . . . 6
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 89 | 83, 88 | eqtr4d 2772 |
. . . . 5
⊢ ((((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) ∧ 𝑔 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 90 | 36 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) → (𝑔 = 0 ∨ 𝑔 = 1 )) |
| 91 | 77, 89, 90 | mpjaodan 960 |
. . . 4
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 0 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 92 | 57, 57, 57, 36, 30, 38, 32, 41, 75 | 2arwcatlem4 49336 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ { 0 , 1 }) |
| 93 | | ovex 7433 |
. . . . . . . . 9
⊢ (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ V |
| 94 | 93 | elpr 4624 |
. . . . . . . 8
⊢ ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) ∈ { 0 , 1 } ↔ ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 0 ∨ (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 1 )) |
| 95 | 92, 94 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 0 ∨ (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔) = 1 )) |
| 96 | 57, 57, 57, 95, 30, 38 | 2arwcatlem3 49335 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋) 1 ) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 97 | 96 | adantr 480 |
. . . . 5
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋) 1 ) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 98 | | simpr 484 |
. . . . . 6
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → 𝑓 = 1 ) |
| 99 | 98 | oveq2d 7416 |
. . . . 5
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋) 1 )) |
| 100 | 98 | oveq2d 7416 |
. . . . . . 7
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑔(〈𝑋, 𝑋〉 · 𝑋) 1 )) |
| 101 | 57, 57, 57, 36, 30, 38 | 2arwcatlem3 49335 |
. . . . . . . 8
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑔(〈𝑋, 𝑋〉 · 𝑋) 1 ) = 𝑔) |
| 102 | 101 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋) 1 ) = 𝑔) |
| 103 | 100, 102 | eqtrd 2769 |
. . . . . 6
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓) = 𝑔) |
| 104 | 103 | oveq2d 7416 |
. . . . 5
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓)) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 105 | 97, 99, 104 | 3eqtr4d 2779 |
. . . 4
⊢ (((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) ∧ 𝑓 = 1 ) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 106 | 91, 105, 29 | mpjaodan 960 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 107 | 34 | simprd 495 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑤 = 𝑋) |
| 108 | 58, 107 | oveq12d 7418 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (〈𝑥, 𝑦〉 · 𝑤) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 109 | 28, 35 | opeq12d 4855 |
. . . . . 6
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 〈𝑦, 𝑧〉 = 〈𝑋, 𝑋〉) |
| 110 | 109, 107 | oveq12d 7418 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (〈𝑦, 𝑧〉 · 𝑤) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 111 | 110 | oveqd 7417 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)) |
| 112 | | eqidd 2735 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑓 = 𝑓) |
| 113 | 108, 111,
112 | oveq123d 7421 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = ((𝑘(〈𝑋, 𝑋〉 · 𝑋)𝑔)(〈𝑋, 𝑋〉 · 𝑋)𝑓)) |
| 114 | 27, 35 | opeq12d 4855 |
. . . . 5
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 〈𝑥, 𝑧〉 = 〈𝑋, 𝑋〉) |
| 115 | 114, 107 | oveq12d 7418 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (〈𝑥, 𝑧〉 · 𝑤) = (〈𝑋, 𝑋〉 · 𝑋)) |
| 116 | | eqidd 2735 |
. . . 4
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → 𝑘 = 𝑘) |
| 117 | 115, 116,
60 | oveq123d 7421 |
. . 3
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓)) = (𝑘(〈𝑋, 𝑋〉 · 𝑋)(𝑔(〈𝑋, 𝑋〉 · 𝑋)𝑓))) |
| 118 | 106, 113,
117 | 3eqtr4d 2779 |
. 2
⊢ ((𝜑 ∧ (((𝑥 = 𝑋 ∧ 𝑦 = 𝑋) ∧ (𝑧 = 𝑋 ∧ 𝑤 = 𝑋)) ∧ ((𝑓 = 0 ∨ 𝑓 = 1 ) ∧ (𝑔 = 0 ∨ 𝑔 = 1 ) ∧ (𝑘 = 0 ∨ 𝑘 = 1 )))) → ((𝑘(〈𝑦, 𝑧〉 · 𝑤)𝑔)(〈𝑥, 𝑦〉 · 𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉 · 𝑤)(𝑔(〈𝑥, 𝑦〉 · 𝑧)𝑓))) |
| 119 | 1, 2, 3, 16, 17, 25, 33, 39, 45, 118 | iscatd2 17680 |
1
⊢ (𝜑 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑦 ∈ {𝑋} ↦ 1 ))) |