Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2exopprim | Structured version Visualization version GIF version |
Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
2exopprim | ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppr 44411 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝑎, 𝑏} = {𝐴, 𝐵})) | |
2 | 1 | el2v 3430 | . . . . 5 ⊢ (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝑎, 𝑏} = {𝐴, 𝐵}) |
3 | 2 | eqcomd 2744 | . . . 4 ⊢ (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝐴, 𝐵} = {𝑎, 𝑏}) |
4 | 3 | eqcoms 2746 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 → {𝐴, 𝐵} = {𝑎, 𝑏}) |
5 | 4 | anim1i 614 | . 2 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
6 | 5 | 2eximi 1839 | 1 ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 Vcvv 3422 {cpr 4560 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |