![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2exopprim | Structured version Visualization version GIF version |
Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
2exopprim | ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppr 46945 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝑎, 𝑏} = {𝐴, 𝐵})) | |
2 | 1 | el2v 3495 | . . . . 5 ⊢ (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝑎, 𝑏} = {𝐴, 𝐵}) |
3 | 2 | eqcomd 2746 | . . . 4 ⊢ (〈𝑎, 𝑏〉 = 〈𝐴, 𝐵〉 → {𝐴, 𝐵} = {𝑎, 𝑏}) |
4 | 3 | eqcoms 2748 | . . 3 ⊢ (〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 → {𝐴, 𝐵} = {𝑎, 𝑏}) |
5 | 4 | anim1i 614 | . 2 ⊢ ((〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
6 | 5 | 2eximi 1834 | 1 ⊢ (∃𝑎∃𝑏(〈𝐴, 𝐵〉 = 〈𝑎, 𝑏〉 ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 Vcvv 3488 {cpr 4650 〈cop 4654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |