Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exopprim Structured version   Visualization version   GIF version

Theorem 2exopprim 46492
Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.)
Assertion
Ref Expression
2exopprim (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))

Proof of Theorem 2exopprim
StepHypRef Expression
1 oppr 46039 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵}))
21el2v 3481 . . . . 5 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵})
32eqcomd 2737 . . . 4 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} = {𝑎, 𝑏})
43eqcoms 2739 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ → {𝐴, 𝐵} = {𝑎, 𝑏})
54anim1i 614 . 2 ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))
652eximi 1837 1 (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1780  Vcvv 3473  {cpr 4630  cop 4634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator