![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2exopprim | Structured version Visualization version GIF version |
Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.) |
Ref | Expression |
---|---|
2exopprim | ⊢ (∃𝑎∃𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppr 46039 | . . . . . 6 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵})) | |
2 | 1 | el2v 3481 | . . . . 5 ⊢ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵}) |
3 | 2 | eqcomd 2737 | . . . 4 ⊢ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} = {𝑎, 𝑏}) |
4 | 3 | eqcoms 2739 | . . 3 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ → {𝐴, 𝐵} = {𝑎, 𝑏}) |
5 | 4 | anim1i 614 | . 2 ⊢ ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
6 | 5 | 2eximi 1837 | 1 ⊢ (∃𝑎∃𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎∃𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 Vcvv 3473 {cpr 4630 ⟨cop 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |