Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2exopprim Structured version   Visualization version   GIF version

Theorem 2exopprim 43861
 Description: The existence of an ordered pair fulfilling a wff implies the existence of an unordered pair fulfilling the wff. (Contributed by AV, 29-Jul-2023.)
Assertion
Ref Expression
2exopprim (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))

Proof of Theorem 2exopprim
StepHypRef Expression
1 oppr 43441 . . . . . 6 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵}))
21el2v 3478 . . . . 5 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝑎, 𝑏} = {𝐴, 𝐵})
32eqcomd 2827 . . . 4 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ → {𝐴, 𝐵} = {𝑎, 𝑏})
43eqcoms 2829 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ → {𝐴, 𝐵} = {𝑎, 𝑏})
54anim1i 617 . 2 ((⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))
652eximi 1837 1 (∃𝑎𝑏(⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ∧ 𝜑) → ∃𝑎𝑏({𝐴, 𝐵} = {𝑎, 𝑏} ∧ 𝜑))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781  Vcvv 3471  {cpr 4542  ⟨cop 4546 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator