| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3451), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3451 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 |
| This theorem is referenced by: codir 6093 dfco2 6218 1st2val 7996 2nd2val 7997 fnmap 8806 enrefnn 9018 unfi 9135 wemappo 9502 wemapsolem 9503 fin23lem26 10278 seqval 13977 hash2exprb 14436 hashle2prv 14443 hash3tpexb 14459 mreexexlem4d 17608 pmtrrn2 19390 c0snmgmhm 20371 alexsubALTlem4 23937 elqaalem2 26228 seqsval 28182 upgrex 29019 cusgrsize 29382 erclwwlkref 29949 erclwwlksym 29950 erclwwlknref 29998 erclwwlknsym 29999 eclclwwlkn1 30004 gonanegoal 35339 gonarlem 35381 gonar 35382 fmla0disjsuc 35385 fmlasucdisj 35386 mclsppslem 35570 fneer 36341 curunc 37596 matunitlindflem2 37611 vvdifopab 38249 inxprnres 38280 ineccnvmo 38339 alrmomorn 38340 dfcoss2 38404 dfcoss3 38405 cosscnv 38407 cocossss 38427 cnvcosseq 38428 refressn 38434 antisymressn 38435 trressn 38436 rncossdmcoss 38446 symrelcoss3 38456 1cosscnvxrn 38466 cosscnvssid3 38467 cosscnvssid4 38468 coss0 38470 trcoss 38473 trcoss2 38475 erimeq2 38670 dfeldisj3 38711 dfeldisj4 38712 dfantisymrel5 38754 ismrc 42689 en2pr 43536 pr2cv 43537 permaxext 44995 permac8prim 45004 ovnsubaddlem1 46568 sprsymrelfvlem 47491 sprsymrelf1lem 47492 prprelb 47517 prprspr2 47519 reuprpr 47524 2exopprim 47526 reuopreuprim 47527 |
| Copyright terms: Public domain | W3C validator |