| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3463), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3463 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: codir 6109 dfco2 6234 1st2val 8014 2nd2val 8015 fnmap 8845 enrefnn 9059 unfi 9183 wemappo 9561 wemapsolem 9562 fin23lem26 10337 seqval 14028 hash2exprb 14487 hashle2prv 14494 hash3tpexb 14510 mreexexlem4d 17657 pmtrrn2 19439 c0snmgmhm 20420 alexsubALTlem4 23986 elqaalem2 26278 seqsval 28211 upgrex 29017 cusgrsize 29380 erclwwlkref 29947 erclwwlksym 29948 erclwwlknref 29996 erclwwlknsym 29997 eclclwwlkn1 30002 gonanegoal 35320 gonarlem 35362 gonar 35363 fmla0disjsuc 35366 fmlasucdisj 35367 mclsppslem 35551 fneer 36317 curunc 37572 matunitlindflem2 37587 vvdifopab 38224 inxprnres 38256 ineccnvmo 38321 alrmomorn 38322 dfcoss2 38377 dfcoss3 38378 cosscnv 38380 cocossss 38400 cnvcosseq 38401 refressn 38407 antisymressn 38408 trressn 38409 rncossdmcoss 38419 symrelcoss3 38429 1cosscnvxrn 38439 cosscnvssid3 38440 cosscnvssid4 38441 coss0 38443 trcoss 38446 trcoss2 38448 erimeq2 38642 dfeldisj3 38683 dfeldisj4 38684 dfantisymrel5 38726 ismrc 42671 en2pr 43518 pr2cv 43519 permaxext 44978 ovnsubaddlem1 46547 sprsymrelfvlem 47452 sprsymrelf1lem 47453 prprelb 47478 prprspr2 47480 reuprpr 47485 2exopprim 47487 reuopreuprim 47488 |
| Copyright terms: Public domain | W3C validator |