![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3479), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3479 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 |
This theorem is referenced by: codir 6122 dfco2 6245 1st2val 8003 2nd2val 8004 fnmap 8827 enrefnn 9047 unfi 9172 wemappo 9544 wemapsolem 9545 fin23lem26 10320 seqval 13977 hash2exprb 14432 hashle2prv 14439 mreexexlem4d 17591 pmtrrn2 19328 alexsubALTlem4 23554 elqaalem2 25833 upgrex 28352 cusgrsize 28711 erclwwlkref 29273 erclwwlksym 29274 erclwwlknref 29322 erclwwlknsym 29323 eclclwwlkn1 29328 gonanegoal 34343 gonarlem 34385 gonar 34386 fmla0disjsuc 34389 fmlasucdisj 34390 mclsppslem 34574 fneer 35238 curunc 36470 matunitlindflem2 36485 vvdifopab 37128 inxprnres 37161 ineccnvmo 37226 alrmomorn 37227 dfcoss2 37283 dfcoss3 37284 cosscnv 37286 cocossss 37306 cnvcosseq 37307 refressn 37313 antisymressn 37314 trressn 37315 rncossdmcoss 37325 symrelcoss3 37335 1cosscnvxrn 37345 cosscnvssid3 37346 cosscnvssid4 37347 coss0 37349 trcoss 37352 trcoss2 37354 erimeq2 37548 dfeldisj3 37589 dfeldisj4 37590 dfantisymrel5 37632 ismrc 41439 en2pr 42298 pr2cv 42299 ovnsubaddlem1 45286 sprsymrelfvlem 46158 sprsymrelf1lem 46159 prprelb 46184 prprspr2 46186 reuprpr 46191 2exopprim 46193 reuopreuprim 46194 c0snmgmhm 46713 |
Copyright terms: Public domain | W3C validator |