![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3492), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3492 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 |
This theorem is referenced by: codir 6152 dfco2 6276 1st2val 8058 2nd2val 8059 fnmap 8891 enrefnn 9113 unfi 9238 wemappo 9618 wemapsolem 9619 fin23lem26 10394 seqval 14063 hash2exprb 14520 hashle2prv 14527 hash3tpexb 14543 mreexexlem4d 17705 pmtrrn2 19502 c0snmgmhm 20488 alexsubALTlem4 24079 elqaalem2 26380 seqsval 28312 upgrex 29127 cusgrsize 29490 erclwwlkref 30052 erclwwlksym 30053 erclwwlknref 30101 erclwwlknsym 30102 eclclwwlkn1 30107 gonanegoal 35320 gonarlem 35362 gonar 35363 fmla0disjsuc 35366 fmlasucdisj 35367 mclsppslem 35551 fneer 36319 curunc 37562 matunitlindflem2 37577 vvdifopab 38216 inxprnres 38248 ineccnvmo 38313 alrmomorn 38314 dfcoss2 38369 dfcoss3 38370 cosscnv 38372 cocossss 38392 cnvcosseq 38393 refressn 38399 antisymressn 38400 trressn 38401 rncossdmcoss 38411 symrelcoss3 38421 1cosscnvxrn 38431 cosscnvssid3 38432 cosscnvssid4 38433 coss0 38435 trcoss 38438 trcoss2 38440 erimeq2 38634 dfeldisj3 38675 dfeldisj4 38676 dfantisymrel5 38718 ismrc 42657 en2pr 43509 pr2cv 43510 ovnsubaddlem1 46491 sprsymrelfvlem 47364 sprsymrelf1lem 47365 prprelb 47390 prprspr2 47392 reuprpr 47397 2exopprim 47399 reuopreuprim 47400 |
Copyright terms: Public domain | W3C validator |