| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3440), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 |
| This theorem is referenced by: codir 6066 dfco2 6192 1st2val 7949 2nd2val 7950 fnmap 8757 enrefnn 8968 unfi 9080 wemappo 9435 wemapsolem 9436 fin23lem26 10216 seqval 13919 hash2exprb 14378 hashle2prv 14385 hash3tpexb 14401 mreexexlem4d 17553 pmtrrn2 19372 c0snmgmhm 20380 alexsubALTlem4 23965 elqaalem2 26255 seqsval 28218 upgrex 29070 cusgrsize 29433 erclwwlkref 30000 erclwwlksym 30001 erclwwlknref 30049 erclwwlknsym 30050 eclclwwlkn1 30055 gonanegoal 35396 gonarlem 35438 gonar 35439 fmla0disjsuc 35442 fmlasucdisj 35443 mclsppslem 35627 fneer 36397 curunc 37652 matunitlindflem2 37667 vvdifopab 38307 inxprnres 38340 ineccnvmo 38399 alrmomorn 38400 dfsucmap3 38486 dmsucmap 38491 dfcoss2 38525 dfcoss3 38526 cosscnv 38528 cocossss 38548 cnvcosseq 38549 refressn 38555 antisymressn 38556 trressn 38557 rncossdmcoss 38567 symrelcoss3 38577 1cosscnvxrn 38587 cosscnvssid3 38588 cosscnvssid4 38589 coss0 38591 trcoss 38594 trcoss2 38596 erimeq2 38786 dfeldisj3 38827 dfeldisj4 38828 dfantisymrel5 38870 ismrc 42804 en2pr 43650 pr2cv 43651 permaxext 45108 permac8prim 45117 ovnsubaddlem1 46678 sprsymrelfvlem 47600 sprsymrelf1lem 47601 prprelb 47626 prprspr2 47628 reuprpr 47633 2exopprim 47635 reuopreuprim 47636 |
| Copyright terms: Public domain | W3C validator |