Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3441), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3441 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2104 Vcvv 3437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 |
This theorem is referenced by: codir 6040 dfco2 6163 1st2val 7891 2nd2val 7892 fnmap 8653 enrefnn 8872 unfi 8993 wemappo 9352 wemapsolem 9353 fin23lem26 10127 seqval 13778 hash2exprb 14230 hashle2prv 14237 mreexexlem4d 17401 pmtrrn2 19113 alexsubALTlem4 23246 elqaalem2 25525 upgrex 27507 cusgrsize 27866 erclwwlkref 28429 erclwwlksym 28430 erclwwlknref 28478 erclwwlknsym 28479 eclclwwlkn1 28484 gonanegoal 33359 gonarlem 33401 gonar 33402 fmla0disjsuc 33405 fmlasucdisj 33406 mclsppslem 33590 fneer 34587 curunc 35803 matunitlindflem2 35818 vvdifopab 36442 inxprnres 36470 ineccnvmo 36531 alrmomorn 36532 dfcoss2 36581 dfcoss3 36582 cocossss 36601 cnvcosseq 36602 rncossdmcoss 36615 symrelcoss3 36625 1cosscnvxrn 36635 cosscnvssid3 36636 cosscnvssid4 36637 coss0 36639 trcoss 36642 trcoss2 36644 erim2 36831 dfeldisj3 36872 dfeldisj4 36873 ismrc 40560 en2pr 41192 pr2cv 41193 ovnsubaddlem1 44158 sprsymrelfvlem 45000 sprsymrelf1lem 45001 prprelb 45026 prprspr2 45028 reuprpr 45033 2exopprim 45035 reuopreuprim 45036 c0snmgmhm 45530 |
Copyright terms: Public domain | W3C validator |