Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3434), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3434 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3434 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 |
This theorem is referenced by: codir 6022 dfco2 6146 1st2val 7845 2nd2val 7846 fnmap 8596 enrefnn 8807 unfi 8920 wemappo 9269 wemapsolem 9270 fin23lem26 10065 seqval 13713 hash2exprb 14166 hashle2prv 14173 mreexexlem4d 17337 pmtrrn2 19049 alexsubALTlem4 23182 elqaalem2 25461 upgrex 27443 cusgrsize 27802 erclwwlkref 28363 erclwwlksym 28364 erclwwlknref 28412 erclwwlknsym 28413 eclclwwlkn1 28418 gonanegoal 33293 gonarlem 33335 gonar 33336 fmla0disjsuc 33339 fmlasucdisj 33340 mclsppslem 33524 fneer 34521 curunc 35738 matunitlindflem2 35753 vvdifopab 36378 inxprnres 36406 ineccnvmo 36468 alrmomorn 36469 dfcoss2 36518 dfcoss3 36519 cocossss 36538 cnvcosseq 36539 rncossdmcoss 36552 symrelcoss3 36562 1cosscnvxrn 36572 cosscnvssid3 36573 cosscnvssid4 36574 coss0 36576 trcoss 36579 trcoss2 36581 erim2 36768 dfeldisj3 36809 dfeldisj4 36810 ismrc 40503 en2pr 41107 pr2cv 41108 ovnsubaddlem1 44062 sprsymrelfvlem 44894 sprsymrelf1lem 44895 prprelb 44920 prprspr2 44922 reuprpr 44927 2exopprim 44929 reuopreuprim 44930 c0snmgmhm 45424 |
Copyright terms: Public domain | W3C validator |