| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3454), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3454 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 |
| This theorem is referenced by: codir 6096 dfco2 6221 1st2val 7999 2nd2val 8000 fnmap 8809 enrefnn 9021 unfi 9141 wemappo 9509 wemapsolem 9510 fin23lem26 10285 seqval 13984 hash2exprb 14443 hashle2prv 14450 hash3tpexb 14466 mreexexlem4d 17615 pmtrrn2 19397 c0snmgmhm 20378 alexsubALTlem4 23944 elqaalem2 26235 seqsval 28189 upgrex 29026 cusgrsize 29389 erclwwlkref 29956 erclwwlksym 29957 erclwwlknref 30005 erclwwlknsym 30006 eclclwwlkn1 30011 gonanegoal 35346 gonarlem 35388 gonar 35389 fmla0disjsuc 35392 fmlasucdisj 35393 mclsppslem 35577 fneer 36348 curunc 37603 matunitlindflem2 37618 vvdifopab 38256 inxprnres 38287 ineccnvmo 38346 alrmomorn 38347 dfcoss2 38411 dfcoss3 38412 cosscnv 38414 cocossss 38434 cnvcosseq 38435 refressn 38441 antisymressn 38442 trressn 38443 rncossdmcoss 38453 symrelcoss3 38463 1cosscnvxrn 38473 cosscnvssid3 38474 cosscnvssid4 38475 coss0 38477 trcoss 38480 trcoss2 38482 erimeq2 38677 dfeldisj3 38718 dfeldisj4 38719 dfantisymrel5 38761 ismrc 42696 en2pr 43543 pr2cv 43544 permaxext 45002 permac8prim 45011 ovnsubaddlem1 46575 sprsymrelfvlem 47495 sprsymrelf1lem 47496 prprelb 47521 prprspr2 47523 reuprpr 47528 2exopprim 47530 reuopreuprim 47531 |
| Copyright terms: Public domain | W3C validator |