| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3463), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3463 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 |
| This theorem is referenced by: codir 6109 dfco2 6234 1st2val 8016 2nd2val 8017 fnmap 8847 enrefnn 9061 unfi 9185 wemappo 9563 wemapsolem 9564 fin23lem26 10339 seqval 14030 hash2exprb 14489 hashle2prv 14496 hash3tpexb 14512 mreexexlem4d 17659 pmtrrn2 19441 c0snmgmhm 20422 alexsubALTlem4 23988 elqaalem2 26280 seqsval 28234 upgrex 29071 cusgrsize 29434 erclwwlkref 30001 erclwwlksym 30002 erclwwlknref 30050 erclwwlknsym 30051 eclclwwlkn1 30056 gonanegoal 35374 gonarlem 35416 gonar 35417 fmla0disjsuc 35420 fmlasucdisj 35421 mclsppslem 35605 fneer 36371 curunc 37626 matunitlindflem2 37641 vvdifopab 38278 inxprnres 38310 ineccnvmo 38375 alrmomorn 38376 dfcoss2 38431 dfcoss3 38432 cosscnv 38434 cocossss 38454 cnvcosseq 38455 refressn 38461 antisymressn 38462 trressn 38463 rncossdmcoss 38473 symrelcoss3 38483 1cosscnvxrn 38493 cosscnvssid3 38494 cosscnvssid4 38495 coss0 38497 trcoss 38500 trcoss2 38502 erimeq2 38696 dfeldisj3 38737 dfeldisj4 38738 dfantisymrel5 38780 ismrc 42724 en2pr 43571 pr2cv 43572 permaxext 45030 ovnsubaddlem1 46599 sprsymrelfvlem 47504 sprsymrelf1lem 47505 prprelb 47530 prprspr2 47532 reuprpr 47537 2exopprim 47539 reuopreuprim 47540 |
| Copyright terms: Public domain | W3C validator |