![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3478), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3478 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3478 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 690 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 |
This theorem is referenced by: codir 6121 dfco2 6244 1st2val 8002 2nd2val 8003 fnmap 8826 enrefnn 9046 unfi 9171 wemappo 9543 wemapsolem 9544 fin23lem26 10319 seqval 13976 hash2exprb 14431 hashle2prv 14438 mreexexlem4d 17590 pmtrrn2 19327 alexsubALTlem4 23553 elqaalem2 25832 upgrex 28349 cusgrsize 28708 erclwwlkref 29270 erclwwlksym 29271 erclwwlknref 29319 erclwwlknsym 29320 eclclwwlkn1 29325 gonanegoal 34338 gonarlem 34380 gonar 34381 fmla0disjsuc 34384 fmlasucdisj 34385 mclsppslem 34569 fneer 35233 curunc 36465 matunitlindflem2 36480 vvdifopab 37123 inxprnres 37156 ineccnvmo 37221 alrmomorn 37222 dfcoss2 37278 dfcoss3 37279 cosscnv 37281 cocossss 37301 cnvcosseq 37302 refressn 37308 antisymressn 37309 trressn 37310 rncossdmcoss 37320 symrelcoss3 37330 1cosscnvxrn 37340 cosscnvssid3 37341 cosscnvssid4 37342 coss0 37344 trcoss 37347 trcoss2 37349 erimeq2 37543 dfeldisj3 37584 dfeldisj4 37585 dfantisymrel5 37627 ismrc 41429 en2pr 42288 pr2cv 42289 ovnsubaddlem1 45276 sprsymrelfvlem 46148 sprsymrelf1lem 46149 prprelb 46174 prprspr2 46176 reuprpr 46181 2exopprim 46183 reuopreuprim 46184 c0snmgmhm 46703 |
Copyright terms: Public domain | W3C validator |