| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version | ||
| Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3440), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
| Ref | Expression |
|---|---|
| el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
| Ref | Expression |
|---|---|
| el2v | ⊢ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | vex 3440 | . 2 ⊢ 𝑦 ∈ V | |
| 3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 |
| This theorem is referenced by: codir 6069 dfco2 6194 1st2val 7952 2nd2val 7953 fnmap 8760 enrefnn 8972 unfi 9085 wemappo 9441 wemapsolem 9442 fin23lem26 10219 seqval 13919 hash2exprb 14378 hashle2prv 14385 hash3tpexb 14401 mreexexlem4d 17553 pmtrrn2 19339 c0snmgmhm 20347 alexsubALTlem4 23935 elqaalem2 26226 seqsval 28187 upgrex 29037 cusgrsize 29400 erclwwlkref 29964 erclwwlksym 29965 erclwwlknref 30013 erclwwlknsym 30014 eclclwwlkn1 30019 gonanegoal 35329 gonarlem 35371 gonar 35372 fmla0disjsuc 35375 fmlasucdisj 35376 mclsppslem 35560 fneer 36331 curunc 37586 matunitlindflem2 37601 vvdifopab 38239 inxprnres 38270 ineccnvmo 38329 alrmomorn 38330 dfcoss2 38394 dfcoss3 38395 cosscnv 38397 cocossss 38417 cnvcosseq 38418 refressn 38424 antisymressn 38425 trressn 38426 rncossdmcoss 38436 symrelcoss3 38446 1cosscnvxrn 38456 cosscnvssid3 38457 cosscnvssid4 38458 coss0 38460 trcoss 38463 trcoss2 38465 erimeq2 38660 dfeldisj3 38701 dfeldisj4 38702 dfantisymrel5 38744 ismrc 42678 en2pr 43524 pr2cv 43525 permaxext 44983 permac8prim 44992 ovnsubaddlem1 46555 sprsymrelfvlem 47478 sprsymrelf1lem 47479 prprelb 47504 prprspr2 47506 reuprpr 47511 2exopprim 47513 reuopreuprim 47514 |
| Copyright terms: Public domain | W3C validator |