MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelopab Structured version   Visualization version   GIF version

Theorem 0nelopab 5586
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) Reduce axiom usage and shorten proof. (Revised by GG, 3-Oct-2024.)
Assertion
Ref Expression
0nelopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem 0nelopab
StepHypRef Expression
1 vex 3492 . . . . . . 7 𝑥 ∈ V
2 vex 3492 . . . . . . 7 𝑦 ∈ V
31, 2opnzi 5494 . . . . . 6 𝑥, 𝑦⟩ ≠ ∅
43nesymi 3004 . . . . 5 ¬ ∅ = ⟨𝑥, 𝑦
54intnanr 487 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
65nex 1798 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nex 1798 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
8 elopab 5546 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
97, 8mtbir 323 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wex 1777  wcel 2108  c0 4352  cop 4654  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229
This theorem is referenced by:  brabv  5588  epelg  5600  satf0n0  35346  bj-0nelmpt  37082
  Copyright terms: Public domain W3C validator