MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelopab Structured version   Visualization version   GIF version

Theorem 0nelopab 5471
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) Reduce axiom usage and shorten proof. (Revised by Gino Giotto, 3-Oct-2024.)
Assertion
Ref Expression
0nelopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem 0nelopab
StepHypRef Expression
1 vex 3426 . . . . . . 7 𝑥 ∈ V
2 vex 3426 . . . . . . 7 𝑦 ∈ V
31, 2opnzi 5383 . . . . . 6 𝑥, 𝑦⟩ ≠ ∅
43nesymi 3000 . . . . 5 ¬ ∅ = ⟨𝑥, 𝑦
54intnanr 487 . . . 4 ¬ (∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
65nex 1804 . . 3 ¬ ∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
76nex 1804 . 2 ¬ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
8 elopab 5433 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
97, 8mtbir 322 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wex 1783  wcel 2108  c0 4253  cop 4564  {copab 5132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133
This theorem is referenced by:  brabv  5473  epelg  5487  satf0n0  33240  bj-0nelmpt  35214
  Copyright terms: Public domain W3C validator