MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelopab Structured version   Visualization version   GIF version

Theorem 0nelopab 5429
Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.)
Assertion
Ref Expression
0nelopab ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem 0nelopab
StepHypRef Expression
1 elopab 5391 . . 3 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 nfopab1 5111 . . . . . 6 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfel2 2997 . . . . 5 𝑥∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
43nfn 1858 . . . 4 𝑥 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 nfopab2 5112 . . . . . . 7 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
65nfel2 2997 . . . . . 6 𝑦∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
76nfn 1858 . . . . 5 𝑦 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
8 vex 3472 . . . . . . . 8 𝑥 ∈ V
9 vex 3472 . . . . . . . 8 𝑦 ∈ V
108, 9opnzi 5343 . . . . . . 7 𝑥, 𝑦⟩ ≠ ∅
11 nesym 3067 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ≠ ∅ ↔ ¬ ∅ = ⟨𝑥, 𝑦⟩)
12 pm2.21 123 . . . . . . . 8 (¬ ∅ = ⟨𝑥, 𝑦⟩ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1311, 12sylbi 220 . . . . . . 7 (⟨𝑥, 𝑦⟩ ≠ ∅ → (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
1410, 13ax-mp 5 . . . . . 6 (∅ = ⟨𝑥, 𝑦⟩ → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
1514adantr 484 . . . . 5 ((∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
167, 15exlimi 2218 . . . 4 (∃𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
174, 16exlimi 2218 . . 3 (∃𝑥𝑦(∅ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
181, 17sylbi 220 . 2 (∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
19 id 22 . 2 (¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑})
2018, 19pm2.61i 185 1 ¬ ∅ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2114  wne 3011  c0 4265  cop 4545  {copab 5104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-opab 5105
This theorem is referenced by:  brabv  5430  epelg  5443  satf0n0  32699  bj-0nelmpt  34492
  Copyright terms: Public domain W3C validator