| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelopab | Structured version Visualization version GIF version | ||
| Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) Reduce axiom usage and shorten proof. (Revised by GG, 3-Oct-2024.) |
| Ref | Expression |
|---|---|
| 0nelopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5449 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2989 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
| 5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | 5 | nex 1800 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | 6 | nex 1800 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 8 | elopab 5502 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∅c0 4308 〈cop 4607 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 |
| This theorem is referenced by: brabv 5543 epelg 5554 satf0n0 35400 bj-0nelmpt 37134 |
| Copyright terms: Public domain | W3C validator |