| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelopab | Structured version Visualization version GIF version | ||
| Description: The empty set is never an element in an ordered-pair class abstraction. (Contributed by Alexander van der Vekens, 5-Nov-2017.) Reduce axiom usage and shorten proof. (Revised by GG, 3-Oct-2024.) |
| Ref | Expression |
|---|---|
| 0nelopab | ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3461 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 2 | vex 3461 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 3 | 1, 2 | opnzi 5446 | . . . . . 6 ⊢ 〈𝑥, 𝑦〉 ≠ ∅ |
| 4 | 3 | nesymi 2988 | . . . . 5 ⊢ ¬ ∅ = 〈𝑥, 𝑦〉 |
| 5 | 4 | intnanr 487 | . . . 4 ⊢ ¬ (∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 6 | 5 | nex 1799 | . . 3 ⊢ ¬ ∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 7 | 6 | nex 1799 | . 2 ⊢ ¬ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 8 | elopab 5499 | . 2 ⊢ (∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ ∃𝑥∃𝑦(∅ = 〈𝑥, 𝑦〉 ∧ 𝜑)) | |
| 9 | 7, 8 | mtbir 323 | 1 ⊢ ¬ ∅ ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∅c0 4306 〈cop 4605 {copab 5178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-opab 5179 |
| This theorem is referenced by: brabv 5540 epelg 5551 satf0n0 35321 bj-0nelmpt 37055 |
| Copyright terms: Public domain | W3C validator |