![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu2 | Structured version Visualization version GIF version |
Description: Double restricted existential uniqueness, analogous to 2eu2 2734. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
Ref | Expression |
---|---|
2reu2 | ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurmo 3373 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
2 | 2rmorex 3639 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) | |
3 | 2reu1 42011 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | |
4 | simpl 476 | . . . 4 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
5 | 3, 4 | syl6bi 245 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
7 | 2rexreu 42010 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
8 | 7 | expcom 404 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) |
9 | 6, 8 | impbid 204 | 1 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wral 3117 ∃wrex 3118 ∃!wreu 3119 ∃*wrmo 3120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 |
This theorem is referenced by: 2reu8 42017 |
Copyright terms: Public domain | W3C validator |