| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2reu2 | Structured version Visualization version GIF version | ||
| Description: Double restricted existential uniqueness, analogous to 2eu2 2648. (Contributed by Alexander van der Vekens, 29-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2reu2 | ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reurmo 3349 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) | |
| 2 | 2rmorex 3708 | . . 3 ⊢ (∃*𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑) | |
| 3 | 2reu1 3843 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑))) | |
| 4 | simpl 482 | . . . 4 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) | |
| 5 | 3, 4 | biimtrdi 253 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃*𝑦 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
| 6 | 1, 2, 5 | 3syl 18 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
| 7 | 2rexreu 3716 | . . 3 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑) | |
| 8 | 7 | expcom 413 | . 2 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑)) |
| 9 | 6, 8 | impbid 212 | 1 ⊢ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 → (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 𝜑 ↔ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wral 3047 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-eu 2564 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 |
| This theorem is referenced by: 2reu8 47222 |
| Copyright terms: Public domain | W3C validator |