MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2reu2 Structured version   Visualization version   GIF version

Theorem 2reu2 3920
Description: Double restricted existential uniqueness, analogous to 2eu2 2656. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Assertion
Ref Expression
2reu2 (∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴𝑦𝐵 𝜑))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2reu2
StepHypRef Expression
1 reurmo 3391 . . 3 (∃!𝑦𝐵𝑥𝐴 𝜑 → ∃*𝑦𝐵𝑥𝐴 𝜑)
2 2rmorex 3776 . . 3 (∃*𝑦𝐵𝑥𝐴 𝜑 → ∀𝑥𝐴 ∃*𝑦𝐵 𝜑)
3 2reu1 3919 . . . 4 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑)))
4 simpl 482 . . . 4 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴𝑦𝐵 𝜑)
53, 4biimtrdi 253 . . 3 (∀𝑥𝐴 ∃*𝑦𝐵 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 → ∃!𝑥𝐴𝑦𝐵 𝜑))
61, 2, 53syl 18 . 2 (∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 → ∃!𝑥𝐴𝑦𝐵 𝜑))
7 2rexreu 3784 . . 3 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑)
87expcom 413 . 2 (∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴𝑦𝐵 𝜑 → ∃!𝑥𝐴 ∃!𝑦𝐵 𝜑))
96, 8impbid 212 1 (∃!𝑦𝐵𝑥𝐴 𝜑 → (∃!𝑥𝐴 ∃!𝑦𝐵 𝜑 ↔ ∃!𝑥𝐴𝑦𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wral 3067  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-mo 2543  df-eu 2572  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389
This theorem is referenced by:  2reu8  47029
  Copyright terms: Public domain W3C validator