![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu7 | Structured version Visualization version GIF version |
Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2661. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
Ref | Expression |
---|---|
2reu7 | ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
2 | nfre1 3291 | . . . 4 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 | |
3 | 1, 2 | nfreuw 3422 | . . 3 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 |
4 | 3 | reuan 3918 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
5 | ancom 460 | . . . . 5 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
6 | 5 | reubii 3397 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑦 ∈ 𝐵 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
7 | nfre1 3291 | . . . . 5 ⊢ Ⅎ𝑦∃𝑦 ∈ 𝐵 𝜑 | |
8 | 7 | reuan 3918 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
9 | ancom 460 | . . . 4 ⊢ ((∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
10 | 6, 8, 9 | 3bitri 297 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
11 | 10 | reubii 3397 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
12 | ancom 460 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
13 | 4, 11, 12 | 3bitr4ri 304 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3076 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-mo 2543 df-eu 2572 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 |
This theorem is referenced by: 2reu8 47027 |
Copyright terms: Public domain | W3C validator |