Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2reu7 Structured version   Visualization version   GIF version

Theorem 2reu7 44603
Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2659. (Contributed by Alexander van der Vekens, 2-Jul-2017.)
Assertion
Ref Expression
2reu7 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem 2reu7
StepHypRef Expression
1 nfcv 2907 . . . 4 𝑥𝐵
2 nfre1 3239 . . . 4 𝑥𝑥𝐴 𝜑
31, 2nfreuw 3305 . . 3 𝑥∃!𝑦𝐵𝑥𝐴 𝜑
43reuan 3829 . 2 (∃!𝑥𝐴 (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑))
5 ancom 461 . . . . 5 ((∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃𝑦𝐵 𝜑 ∧ ∃𝑥𝐴 𝜑))
65reubii 3325 . . . 4 (∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑦𝐵 (∃𝑦𝐵 𝜑 ∧ ∃𝑥𝐴 𝜑))
7 nfre1 3239 . . . . 5 𝑦𝑦𝐵 𝜑
87reuan 3829 . . . 4 (∃!𝑦𝐵 (∃𝑦𝐵 𝜑 ∧ ∃𝑥𝐴 𝜑) ↔ (∃𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
9 ancom 461 . . . 4 ((∃𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
106, 8, 93bitri 297 . . 3 (∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
1110reubii 3325 . 2 (∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑) ↔ ∃!𝑥𝐴 (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
12 ancom 461 . 2 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ (∃!𝑦𝐵𝑥𝐴 𝜑 ∧ ∃!𝑥𝐴𝑦𝐵 𝜑))
134, 11, 123bitr4ri 304 1 ((∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑) ↔ ∃!𝑥𝐴 ∃!𝑦𝐵 (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wrex 3065  ∃!wreu 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-mo 2540  df-eu 2569  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072
This theorem is referenced by:  2reu8  44604
  Copyright terms: Public domain W3C validator