| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2reu7 | Structured version Visualization version GIF version | ||
| Description: Two equivalent expressions for double restricted existential uniqueness, analogous to 2eu7 2657. (Contributed by Alexander van der Vekens, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| 2reu7 | ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 2 | nfre1 3267 | . . . 4 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 | |
| 3 | 1, 2 | nfreuw 3393 | . . 3 ⊢ Ⅎ𝑥∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 |
| 4 | 3 | reuan 3871 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) |
| 5 | ancom 460 | . . . . 5 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
| 6 | 5 | reubii 3368 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑦 ∈ 𝐵 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
| 7 | nfre1 3267 | . . . . 5 ⊢ Ⅎ𝑦∃𝑦 ∈ 𝐵 𝜑 | |
| 8 | 7 | reuan 3871 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
| 9 | ancom 460 | . . . 4 ⊢ ((∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) | |
| 10 | 6, 8, 9 | 3bitri 297 | . . 3 ⊢ (∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| 11 | 10 | reubii 3368 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑) ↔ ∃!𝑥 ∈ 𝐴 (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| 12 | ancom 460 | . 2 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ (∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑)) | |
| 13 | 4, 11, 12 | 3bitr4ri 304 | 1 ⊢ ((∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) ↔ ∃!𝑥 ∈ 𝐴 ∃!𝑦 ∈ 𝐵 (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wrex 3060 ∃!wreu 3357 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2539 df-eu 2568 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 |
| This theorem is referenced by: 2reu8 47089 |
| Copyright terms: Public domain | W3C validator |