MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1336
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1330 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-3or 1088
This theorem is referenced by:  f1dom3fv3dif  7305  f1dom3el3dif  7306  xpord3inddlem  8195  elfiun  9499  prinfzo0  13755  fvf1tp  13840  lcmfunsnlem2lem2  16686  estrreslem2  18207  ostth  27701  noextendlt  27732  sltsolem1  27738  nodense  27755  btwncolg1  28581  hlln  28633  btwnlng1  28645  colineartriv1  36031  weiunso  36432  fnwe2lem3  43009  dfxlim2v  45768  eenglngeehlnmlem2  48472
  Copyright terms: Public domain W3C validator