MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1337
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1331 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  f1dom3fv3dif  7225  f1dom3el3dif  7226  xpord3inddlem  8110  elfiun  9357  prinfzo0  13635  fvf1tp  13727  lcmfunsnlem2lem2  16585  estrreslem2  18079  ostth  27583  noextendlt  27614  sltsolem1  27620  nodense  27637  btwncolg1  28535  hlln  28587  btwnlng1  28599  constrllcllem  33735  colineartriv1  36048  weiunso  36447  fnwe2lem3  43034  dfxlim2v  45838  gpgprismgriedgdmss  48036  gpgedgvtx0  48045  gpgvtxedg0  48047  gpgvtxedg1  48048  gpgprismgr4cycllem3  48080  eenglngeehlnmlem2  48720
  Copyright terms: Public domain W3C validator