| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7205 f1dom3el3dif 7206 xpord3inddlem 8087 elfiun 9320 prinfzo0 13601 fvf1tp 13693 lcmfunsnlem2lem2 16550 estrreslem2 18044 ostth 27548 noextendlt 27579 sltsolem1 27585 nodense 27602 btwncolg1 28500 hlln 28552 btwnlng1 28564 constrllcllem 33719 colineartriv1 36041 weiunso 36440 fnwe2lem3 43025 dfxlim2v 45828 gpgprismgriedgdmss 48036 gpgedgvtx0 48045 gpgvtxedg0 48047 gpgvtxedg1 48048 gpgprismgr4cycllem3 48081 eenglngeehlnmlem2 48723 |
| Copyright terms: Public domain | W3C validator |