| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7225 f1dom3el3dif 7226 xpord3inddlem 8110 elfiun 9357 prinfzo0 13635 fvf1tp 13727 lcmfunsnlem2lem2 16585 estrreslem2 18075 ostth 27526 noextendlt 27557 sltsolem1 27563 nodense 27580 btwncolg1 28458 hlln 28510 btwnlng1 28522 constrllcllem 33715 colineartriv1 36028 weiunso 36427 fnwe2lem3 43014 dfxlim2v 45818 gpgprismgriedgdmss 48016 gpgedgvtx0 48025 gpgvtxedg0 48027 gpgvtxedg1 48028 gpgprismgr4cycllem3 48060 eenglngeehlnmlem2 48700 |
| Copyright terms: Public domain | W3C validator |