| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7266 f1dom3el3dif 7267 xpord3inddlem 8158 elfiun 9447 prinfzo0 13720 fvf1tp 13811 lcmfunsnlem2lem2 16663 estrreslem2 18155 ostth 27607 noextendlt 27638 sltsolem1 27644 nodense 27661 btwncolg1 28539 hlln 28591 btwnlng1 28603 constrllcllem 33791 colineartriv1 36090 weiunso 36489 fnwe2lem3 43043 dfxlim2v 45843 gpgprismgriedgdmss 48023 gpgedgvtx0 48032 gpgvtxedg0 48034 gpgvtxedg1 48035 gpgprismgr4cycllem3 48063 eenglngeehlnmlem2 48685 |
| Copyright terms: Public domain | W3C validator |