MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1335
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1329 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  f1dom3fv3dif  7141  f1dom3el3dif  7142  elfiun  9189  prinfzo0  13426  lcmfunsnlem2lem2  16344  estrreslem2  17855  ostth  26787  btwncolg1  26916  hlln  26968  btwnlng1  26980  xpord3ind  33800  noextendlt  33872  sltsolem1  33878  nodense  33895  colineartriv1  34369  fnwe2lem3  40877  dfxlim2v  43388  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator