![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix1 1330 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: f1dom3fv3dif 7305 f1dom3el3dif 7306 xpord3inddlem 8195 elfiun 9499 prinfzo0 13755 fvf1tp 13840 lcmfunsnlem2lem2 16686 estrreslem2 18207 ostth 27701 noextendlt 27732 sltsolem1 27738 nodense 27755 btwncolg1 28581 hlln 28633 btwnlng1 28645 colineartriv1 36031 weiunso 36432 fnwe2lem3 43009 dfxlim2v 45768 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |