| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7202 f1dom3el3dif 7203 xpord3inddlem 8084 elfiun 9314 prinfzo0 13598 fvf1tp 13693 lcmfunsnlem2lem2 16550 estrreslem2 18044 ostth 27577 noextendlt 27608 sltsolem1 27614 nodense 27631 btwncolg1 28533 hlln 28585 btwnlng1 28597 constrllcllem 33765 colineartriv1 36109 weiunso 36508 fnwe2lem3 43093 dfxlim2v 45893 gpgprismgriedgdmss 48091 gpgedgvtx0 48100 gpgvtxedg0 48102 gpgvtxedg1 48103 gpgprismgr4cycllem3 48136 eenglngeehlnmlem2 48778 |
| Copyright terms: Public domain | W3C validator |