Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix1 1329 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: f1dom3fv3dif 7141 f1dom3el3dif 7142 elfiun 9189 prinfzo0 13426 lcmfunsnlem2lem2 16344 estrreslem2 17855 ostth 26787 btwncolg1 26916 hlln 26968 btwnlng1 26980 xpord3ind 33800 noextendlt 33872 sltsolem1 33878 nodense 33895 colineartriv1 34369 fnwe2lem3 40877 dfxlim2v 43388 eenglngeehlnmlem2 46084 |
Copyright terms: Public domain | W3C validator |