MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1335
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1329 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  f1dom3fv3dif  7270  f1dom3el3dif  7271  xpord3inddlem  8145  elfiun  9431  prinfzo0  13678  lcmfunsnlem2lem2  16583  estrreslem2  18100  ostth  27485  noextendlt  27515  sltsolem1  27521  nodense  27538  btwncolg1  28239  hlln  28291  btwnlng1  28303  colineartriv1  35509  fnwe2lem3  42257  dfxlim2v  45022  eenglngeehlnmlem2  47586
  Copyright terms: Public domain W3C validator