MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1337
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1331 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  f1dom3fv3dif  7202  f1dom3el3dif  7203  xpord3inddlem  8084  elfiun  9314  prinfzo0  13598  fvf1tp  13693  lcmfunsnlem2lem2  16550  estrreslem2  18044  ostth  27577  noextendlt  27608  sltsolem1  27614  nodense  27631  btwncolg1  28533  hlln  28585  btwnlng1  28597  constrllcllem  33765  colineartriv1  36109  weiunso  36508  fnwe2lem3  43093  dfxlim2v  45893  gpgprismgriedgdmss  48091  gpgedgvtx0  48100  gpgvtxedg0  48102  gpgvtxedg1  48103  gpgprismgr4cycllem3  48136  eenglngeehlnmlem2  48778
  Copyright terms: Public domain W3C validator