![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix1 1329 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: f1dom3fv3dif 7288 f1dom3el3dif 7289 xpord3inddlem 8178 elfiun 9468 prinfzo0 13735 fvf1tp 13826 lcmfunsnlem2lem2 16673 estrreslem2 18194 ostth 27698 noextendlt 27729 sltsolem1 27735 nodense 27752 btwncolg1 28578 hlln 28630 btwnlng1 28642 colineartriv1 36049 weiunso 36449 fnwe2lem3 43041 dfxlim2v 45803 gpgedgvtx0 47954 gpgvtxedg0 47956 gpgvtxedg1 47957 eenglngeehlnmlem2 48588 |
Copyright terms: Public domain | W3C validator |