MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix1d Structured version   Visualization version   GIF version

Theorem 3mix1d 1335
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix1d (𝜑 → (𝜓𝜒𝜃))

Proof of Theorem 3mix1d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix1 1329 . 2 (𝜓 → (𝜓𝜒𝜃))
31, 2syl 17 1 (𝜑 → (𝜓𝜒𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  f1dom3fv3dif  7138  f1dom3el3dif  7139  elfiun  9167  prinfzo0  13424  lcmfunsnlem2lem2  16342  estrreslem2  17853  ostth  26785  btwncolg1  26914  hlln  26966  btwnlng1  26978  xpord3ind  33796  noextendlt  33868  sltsolem1  33874  nodense  33891  colineartriv1  34365  fnwe2lem3  40874  dfxlim2v  43359  eenglngeehlnmlem2  46053
  Copyright terms: Public domain W3C validator