| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7225 f1dom3el3dif 7226 xpord3inddlem 8110 elfiun 9357 prinfzo0 13635 fvf1tp 13727 lcmfunsnlem2lem2 16585 estrreslem2 18079 ostth 27583 noextendlt 27614 sltsolem1 27620 nodense 27637 btwncolg1 28535 hlln 28587 btwnlng1 28599 constrllcllem 33735 colineartriv1 36048 weiunso 36447 fnwe2lem3 43034 dfxlim2v 45838 gpgprismgriedgdmss 48036 gpgedgvtx0 48045 gpgvtxedg0 48047 gpgvtxedg1 48048 gpgprismgr4cycllem3 48080 eenglngeehlnmlem2 48720 |
| Copyright terms: Public domain | W3C validator |