| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7243 f1dom3el3dif 7244 xpord3inddlem 8133 elfiun 9381 prinfzo0 13659 fvf1tp 13751 lcmfunsnlem2lem2 16609 estrreslem2 18099 ostth 27550 noextendlt 27581 sltsolem1 27587 nodense 27604 btwncolg1 28482 hlln 28534 btwnlng1 28546 constrllcllem 33742 colineartriv1 36055 weiunso 36454 fnwe2lem3 43041 dfxlim2v 45845 gpgprismgriedgdmss 48043 gpgedgvtx0 48052 gpgvtxedg0 48054 gpgvtxedg1 48055 gpgprismgr4cycllem3 48087 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |