| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix1d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix1d | ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix1 1331 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜒 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜓 ∨ 𝜒 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: f1dom3fv3dif 7246 f1dom3el3dif 7247 xpord3inddlem 8136 elfiun 9388 prinfzo0 13666 fvf1tp 13758 lcmfunsnlem2lem2 16616 estrreslem2 18106 ostth 27557 noextendlt 27588 sltsolem1 27594 nodense 27611 btwncolg1 28489 hlln 28541 btwnlng1 28553 constrllcllem 33749 colineartriv1 36062 weiunso 36461 fnwe2lem3 43048 dfxlim2v 45852 gpgprismgriedgdmss 48047 gpgedgvtx0 48056 gpgvtxedg0 48058 gpgvtxedg1 48059 gpgprismgr4cycllem3 48091 eenglngeehlnmlem2 48731 |
| Copyright terms: Public domain | W3C validator |