![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prinfzo0 | Structured version Visualization version GIF version |
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
prinfzo0 | ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz3 13507 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
2 | fznuz 13579 | . . . . . 6 ⊢ (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) |
4 | 3 | 3mix1d 1333 | . . . 4 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
5 | 3ianor 1104 | . . . . 5 ⊢ (¬ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) | |
6 | elfzo2 13631 | . . . . 5 ⊢ (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | |
7 | 5, 6 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
8 | 4, 7 | sylibr 233 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
9 | incom 4193 | . . . . 5 ⊢ ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀}) | |
10 | 9 | eqeq1i 2729 | . . . 4 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅) |
11 | disjsn 4707 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) | |
12 | 10, 11 | bitri 275 | . . 3 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
13 | 8, 12 | sylibr 233 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
14 | fzonel 13642 | . . . 4 ⊢ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁) | |
15 | 14 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
16 | incom 4193 | . . . . 5 ⊢ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁}) | |
17 | 16 | eqeq1i 2729 | . . . 4 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅) |
18 | disjsn 4707 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) | |
19 | 17, 18 | bitri 275 | . . 3 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
20 | 15, 19 | sylibr 233 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
21 | df-pr 4623 | . . . . 5 ⊢ {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}) | |
22 | 21 | ineq1i 4200 | . . . 4 ⊢ ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) |
23 | 22 | eqeq1i 2729 | . . 3 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
24 | undisj1 4453 | . . 3 ⊢ ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) | |
25 | 23, 24 | bitr4i 278 | . 2 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)) |
26 | 13, 20, 25 | sylanbrc 582 | 1 ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ w3o 1083 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cun 3938 ∩ cin 3939 ∅c0 4314 {csn 4620 {cpr 4622 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 1c1 11106 + caddc 11108 < clt 11244 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ..^cfzo 13623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 |
This theorem is referenced by: spthispth 29407 |
Copyright terms: Public domain | W3C validator |