| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prinfzo0 | Structured version Visualization version GIF version | ||
| Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.) |
| Ref | Expression |
|---|---|
| prinfzo0 | ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfz3 13555 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀)) | |
| 2 | fznuz 13630 | . . . . . 6 ⊢ (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1))) |
| 4 | 3 | 3mix1d 1336 | . . . 4 ⊢ (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
| 5 | 3ianor 1106 | . . . . 5 ⊢ (¬ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) | |
| 6 | elfzo2 13683 | . . . . 5 ⊢ (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁)) | |
| 7 | 5, 6 | xchnxbir 333 | . . . 4 ⊢ (¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ≥‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁)) |
| 8 | 4, 7 | sylibr 234 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
| 9 | incom 4189 | . . . . 5 ⊢ ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀}) | |
| 10 | 9 | eqeq1i 2739 | . . . 4 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅) |
| 11 | disjsn 4691 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) | |
| 12 | 10, 11 | bitri 275 | . . 3 ⊢ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁)) |
| 13 | 8, 12 | sylibr 234 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
| 14 | fzonel 13694 | . . . 4 ⊢ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁) | |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
| 16 | incom 4189 | . . . . 5 ⊢ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁}) | |
| 17 | 16 | eqeq1i 2739 | . . . 4 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅) |
| 18 | disjsn 4691 | . . . 4 ⊢ ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) | |
| 19 | 17, 18 | bitri 275 | . . 3 ⊢ (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)) |
| 20 | 15, 19 | sylibr 234 | . 2 ⊢ (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
| 21 | df-pr 4609 | . . . . 5 ⊢ {𝑀, 𝑁} = ({𝑀} ∪ {𝑁}) | |
| 22 | 21 | ineq1i 4196 | . . . 4 ⊢ ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) |
| 23 | 22 | eqeq1i 2739 | . . 3 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
| 24 | undisj1 4442 | . . 3 ⊢ ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅) | |
| 25 | 23, 24 | bitr4i 278 | . 2 ⊢ (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)) |
| 26 | 13, 20, 25 | sylanbrc 583 | 1 ⊢ (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ w3o 1085 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∪ cun 3929 ∩ cin 3930 ∅c0 4313 {csn 4606 {cpr 4608 class class class wbr 5123 ‘cfv 6540 (class class class)co 7412 1c1 11137 + caddc 11139 < clt 11276 ℤcz 12595 ℤ≥cuz 12859 ...cfz 13528 ..^cfzo 13675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-n0 12509 df-z 12596 df-uz 12860 df-fz 13529 df-fzo 13676 |
| This theorem is referenced by: spthispth 29671 |
| Copyright terms: Public domain | W3C validator |