MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prinfzo0 Structured version   Visualization version   GIF version

Theorem prinfzo0 13071
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.)
Assertion
Ref Expression
prinfzo0 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)

Proof of Theorem prinfzo0
StepHypRef Expression
1 elfz3 12912 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
2 fznuz 12984 . . . . . 6 (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
31, 2syl 17 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
433mix1d 1333 . . . 4 (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
5 3ianor 1104 . . . . 5 (¬ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
6 elfzo2 13036 . . . . 5 (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
75, 6xchnxbir 336 . . . 4 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
84, 7sylibr 237 . . 3 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
9 incom 4128 . . . . 5 ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀})
109eqeq1i 2803 . . . 4 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅)
11 disjsn 4607 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
1210, 11bitri 278 . . 3 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
138, 12sylibr 237 . 2 (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
14 fzonel 13046 . . . 4 ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)
1514a1i 11 . . 3 (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
16 incom 4128 . . . . 5 ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁})
1716eqeq1i 2803 . . . 4 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅)
18 disjsn 4607 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
1917, 18bitri 278 . . 3 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
2015, 19sylibr 237 . 2 (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
21 df-pr 4528 . . . . 5 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2221ineq1i 4135 . . . 4 ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁))
2322eqeq1i 2803 . . 3 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
24 undisj1 4369 . . 3 ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
2523, 24bitr4i 281 . 2 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅))
2613, 20, 25sylanbrc 586 1 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  cun 3879  cin 3880  c0 4243  {csn 4525  {cpr 4527   class class class wbr 5030  cfv 6324  (class class class)co 7135  1c1 10527   + caddc 10529   < clt 10664  cz 11969  cuz 12231  ...cfz 12885  ..^cfzo 13028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029
This theorem is referenced by:  spthispth  27515
  Copyright terms: Public domain W3C validator