MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prinfzo0 Structured version   Visualization version   GIF version

Theorem prinfzo0 13719
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.)
Assertion
Ref Expression
prinfzo0 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)

Proof of Theorem prinfzo0
StepHypRef Expression
1 elfz3 13555 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
2 fznuz 13630 . . . . . 6 (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
31, 2syl 17 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
433mix1d 1336 . . . 4 (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
5 3ianor 1106 . . . . 5 (¬ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
6 elfzo2 13683 . . . . 5 (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
75, 6xchnxbir 333 . . . 4 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
84, 7sylibr 234 . . 3 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
9 incom 4189 . . . . 5 ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀})
109eqeq1i 2739 . . . 4 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅)
11 disjsn 4691 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
1210, 11bitri 275 . . 3 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
138, 12sylibr 234 . 2 (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
14 fzonel 13694 . . . 4 ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)
1514a1i 11 . . 3 (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
16 incom 4189 . . . . 5 ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁})
1716eqeq1i 2739 . . . 4 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅)
18 disjsn 4691 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
1917, 18bitri 275 . . 3 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
2015, 19sylibr 234 . 2 (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
21 df-pr 4609 . . . . 5 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2221ineq1i 4196 . . . 4 ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁))
2322eqeq1i 2739 . . 3 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
24 undisj1 4442 . . 3 ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
2523, 24bitr4i 278 . 2 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅))
2613, 20, 25sylanbrc 583 1 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  cun 3929  cin 3930  c0 4313  {csn 4606  {cpr 4608   class class class wbr 5123  cfv 6540  (class class class)co 7412  1c1 11137   + caddc 11139   < clt 11276  cz 12595  cuz 12859  ...cfz 13528  ..^cfzo 13675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-fzo 13676
This theorem is referenced by:  spthispth  29671
  Copyright terms: Public domain W3C validator