MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prinfzo0 Structured version   Visualization version   GIF version

Theorem prinfzo0 13744
Description: The intersection of a half-open integer range and the pair of its outer left borders is empty. (Contributed by AV, 9-Jan-2021.)
Assertion
Ref Expression
prinfzo0 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)

Proof of Theorem prinfzo0
StepHypRef Expression
1 elfz3 13580 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (𝑀...𝑀))
2 fznuz 13655 . . . . . 6 (𝑀 ∈ (𝑀...𝑀) → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
31, 2syl 17 . . . . 5 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)))
433mix1d 1337 . . . 4 (𝑀 ∈ ℤ → (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
5 3ianor 1107 . . . . 5 (¬ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
6 elfzo2 13708 . . . . 5 (𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (𝑀 ∈ (ℤ‘(𝑀 + 1)) ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁))
75, 6xchnxbir 333 . . . 4 𝑀 ∈ ((𝑀 + 1)..^𝑁) ↔ (¬ 𝑀 ∈ (ℤ‘(𝑀 + 1)) ∨ ¬ 𝑁 ∈ ℤ ∨ ¬ 𝑀 < 𝑁))
84, 7sylibr 234 . . 3 (𝑀 ∈ ℤ → ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
9 incom 4220 . . . . 5 ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑀})
109eqeq1i 2742 . . . 4 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅)
11 disjsn 4719 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
1210, 11bitri 275 . . 3 (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑀 ∈ ((𝑀 + 1)..^𝑁))
138, 12sylibr 234 . 2 (𝑀 ∈ ℤ → ({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
14 fzonel 13719 . . . 4 ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁)
1514a1i 11 . . 3 (𝑀 ∈ ℤ → ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
16 incom 4220 . . . . 5 ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (((𝑀 + 1)..^𝑁) ∩ {𝑁})
1716eqeq1i 2742 . . . 4 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅)
18 disjsn 4719 . . . 4 ((((𝑀 + 1)..^𝑁) ∩ {𝑁}) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
1917, 18bitri 275 . . 3 (({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ ¬ 𝑁 ∈ ((𝑀 + 1)..^𝑁))
2015, 19sylibr 234 . 2 (𝑀 ∈ ℤ → ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
21 df-pr 4637 . . . . 5 {𝑀, 𝑁} = ({𝑀} ∪ {𝑁})
2221ineq1i 4227 . . . 4 ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁))
2322eqeq1i 2742 . . 3 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
24 undisj1 4471 . . 3 ((({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅) ↔ (({𝑀} ∪ {𝑁}) ∩ ((𝑀 + 1)..^𝑁)) = ∅)
2523, 24bitr4i 278 . 2 (({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ↔ (({𝑀} ∩ ((𝑀 + 1)..^𝑁)) = ∅ ∧ ({𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅))
2613, 20, 25sylanbrc 583 1 (𝑀 ∈ ℤ → ({𝑀, 𝑁} ∩ ((𝑀 + 1)..^𝑁)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3o 1086  w3a 1087   = wceq 1539  wcel 2108  cun 3964  cin 3965  c0 4342  {csn 4634  {cpr 4636   class class class wbr 5151  cfv 6569  (class class class)co 7438  1c1 11163   + caddc 11165   < clt 11302  cz 12620  cuz 12885  ...cfz 13553  ..^cfzo 13700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-er 8753  df-en 8994  df-dom 8995  df-sdom 8996  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-n0 12534  df-z 12621  df-uz 12886  df-fz 13554  df-fzo 13701
This theorem is referenced by:  spthispth  29770
  Copyright terms: Public domain W3C validator