![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwncolg1 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | β’ π = (BaseβπΊ) |
tglngval.l | β’ πΏ = (LineGβπΊ) |
tglngval.i | β’ πΌ = (ItvβπΊ) |
tglngval.g | β’ (π β πΊ β TarskiG) |
tglngval.x | β’ (π β π β π) |
tglngval.y | β’ (π β π β π) |
tgcolg.z | β’ (π β π β π) |
btwncolg1.z | β’ (π β π β (ππΌπ)) |
Ref | Expression |
---|---|
btwncolg1 | β’ (π β (π β (ππΏπ) β¨ π = π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolg1.z | . . 3 β’ (π β π β (ππΌπ)) | |
2 | 1 | 3mix1d 1336 | . 2 β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) |
3 | tglngval.p | . . 3 β’ π = (BaseβπΊ) | |
4 | tglngval.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | tglngval.i | . . 3 β’ πΌ = (ItvβπΊ) | |
6 | tglngval.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | tglngval.x | . . 3 β’ (π β π β π) | |
8 | tglngval.y | . . 3 β’ (π β π β π) | |
9 | tgcolg.z | . . 3 β’ (π β π β π) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 27794 | . 2 β’ (π β ((π β (ππΏπ) β¨ π = π) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
11 | 2, 10 | mpbird 256 | 1 β’ (π β (π β (ππΏπ) β¨ π = π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ wo 845 β¨ w3o 1086 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 TarskiGcstrkg 27667 Itvcitv 27673 LineGclng 27674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-trkgc 27688 df-trkgcb 27690 df-trkg 27693 |
This theorem is referenced by: tgdim01ln 27804 lnxfr 27806 tgbtwnconn1lem3 27814 tgbtwnconnln3 27818 legov2 27826 ncolne1 27865 tglineeltr 27871 mirtrcgr 27923 symquadlem 27929 midexlem 27932 ragflat 27944 colperpexlem1 27970 opphllem 27975 |
Copyright terms: Public domain | W3C validator |