![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwncolg1 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwncolg1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
btwncolg1 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolg1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
2 | 1 | 3mix1d 1336 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | tgcolg.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 27670 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
11 | 2, 10 | mpbird 256 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 845 ∨ w3o 1086 = wceq 1541 ∈ wcel 2106 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 TarskiGcstrkg 27543 Itvcitv 27549 LineGclng 27550 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6484 df-fun 6534 df-fv 6540 df-ov 7396 df-oprab 7397 df-mpo 7398 df-trkgc 27564 df-trkgcb 27566 df-trkg 27569 |
This theorem is referenced by: tgdim01ln 27680 lnxfr 27682 tgbtwnconn1lem3 27690 tgbtwnconnln3 27694 legov2 27702 ncolne1 27741 tglineeltr 27747 mirtrcgr 27799 symquadlem 27805 midexlem 27808 ragflat 27820 colperpexlem1 27846 opphllem 27851 |
Copyright terms: Public domain | W3C validator |