![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwncolg1 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
tglngval.p | ⊢ 𝑃 = (Base‘𝐺) |
tglngval.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglngval.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglngval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglngval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
tglngval.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
tgcolg.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
btwncolg1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
btwncolg1 | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwncolg1.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ (𝑋𝐼𝑌)) | |
2 | 1 | 3mix1d 1317 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))) |
3 | tglngval.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
4 | tglngval.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | tglngval.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
6 | tglngval.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | tglngval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
8 | tglngval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
9 | tgcolg.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
10 | 3, 4, 5, 6, 7, 8, 9 | tgcolg 26057 | . 2 ⊢ (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))) |
11 | 2, 10 | mpbird 249 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 834 ∨ w3o 1068 = wceq 1508 ∈ wcel 2051 ‘cfv 6185 (class class class)co 6974 Basecbs 16337 TarskiGcstrkg 25933 Itvcitv 25939 LineGclng 25940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-sbc 3675 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-iota 6149 df-fun 6187 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-trkgc 25951 df-trkgcb 25953 df-trkg 25956 |
This theorem is referenced by: tgdim01ln 26067 lnxfr 26069 tgbtwnconn1lem3 26077 tgbtwnconnln3 26081 legov2 26089 ncolne1 26128 tglineeltr 26134 mirtrcgr 26186 symquadlem 26192 midexlem 26195 ragflat 26207 colperpexlem1 26233 opphllem 26238 |
Copyright terms: Public domain | W3C validator |