Proof of Theorem eenglngeehlnmlem2
| Step | Hyp | Ref
| Expression |
| 1 | | 0red 11264 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 0 ∈
ℝ) |
| 2 | | 1red 11262 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 1 ∈
ℝ) |
| 3 | | simpr 484 |
. . . 4
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
| 4 | | reorelicc 48631 |
. . . 4
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡)) |
| 5 | 1, 2, 3, 4 | syl3anc 1373 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡)) |
| 6 | | 0xr 11308 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℝ* |
| 7 | 6 | a1i 11 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → 0 ∈
ℝ*) |
| 8 | | 1xr 11320 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ* |
| 9 | 8 | a1i 11 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → 1 ∈
ℝ*) |
| 10 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ∈
ℝ) |
| 11 | 10 | recnd 11289 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ∈
ℂ) |
| 12 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ∈
ℝ) |
| 13 | | 1red 11262 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ∈
ℝ) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 < 0) |
| 15 | | 0lt1 11785 |
. . . . . . . . . . . . . . . . 17
⊢ 0 <
1 |
| 16 | 15 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 <
1) |
| 17 | 10, 12, 13, 14, 16 | lttrd 11422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 < 1) |
| 18 | 10, 17 | ltned 11397 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≠ 1) |
| 19 | | 1subrec1sub 48626 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 1) → (1 − (1 /
(1 − 𝑡))) = (𝑡 / (𝑡 − 1))) |
| 20 | 11, 18, 19 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 /
(1 − 𝑡))) = (𝑡 / (𝑡 − 1))) |
| 21 | 10, 13 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ∈
ℝ) |
| 22 | | 1cnd 11256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ∈
ℂ) |
| 23 | 11, 22, 18 | subne0d 11629 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ≠
0) |
| 24 | 10, 21, 23 | redivcld 12095 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈ ℝ) |
| 25 | 24 | rexrd 11311 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈
ℝ*) |
| 26 | 20, 25 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 /
(1 − 𝑡))) ∈
ℝ*) |
| 27 | 26 | ad4ant23 753 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 − (1 / (1 − 𝑡))) ∈
ℝ*) |
| 28 | 10 | renegcld 11690 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → -𝑡 ∈
ℝ) |
| 29 | 10, 13 | sublt0d 11889 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) < 0 ↔ 𝑡 < 1)) |
| 30 | 17, 29 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) <
0) |
| 31 | 21, 30 | negelrpd 13069 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → -(𝑡 − 1) ∈
ℝ+) |
| 32 | 10, 12, 14 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≤ 0) |
| 33 | 10 | le0neg1d 11834 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 ≤ 0 ↔ 0 ≤ -𝑡)) |
| 34 | 32, 33 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ -𝑡) |
| 35 | 28, 31, 34 | divge0d 13117 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ (-𝑡 / -(𝑡 − 1))) |
| 36 | 21 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ∈
ℂ) |
| 37 | 11, 36, 23 | div2negd 12058 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (-𝑡 / -(𝑡 − 1)) = (𝑡 / (𝑡 − 1))) |
| 38 | 20, 37 | eqtr4d 2780 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 /
(1 − 𝑡))) = (-𝑡 / -(𝑡 − 1))) |
| 39 | 35, 38 | breqtrrd 5171 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ (1
− (1 / (1 − 𝑡)))) |
| 40 | 39 | ad4ant23 753 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → 0 ≤ (1 − (1 / (1 −
𝑡)))) |
| 41 | | 1red 11262 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → 1 ∈
ℝ) |
| 42 | 13, 10 | resubcld 11691 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈
ℝ) |
| 43 | 10, 13 | posdifd 11850 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 < 1 ↔ 0 < (1 −
𝑡))) |
| 44 | 17, 43 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 < (1
− 𝑡)) |
| 45 | 42, 44 | elrpd 13074 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈
ℝ+) |
| 46 | 45 | ad4ant23 753 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 − 𝑡) ∈
ℝ+) |
| 47 | 46 | rpreccld 13087 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 / (1 − 𝑡)) ∈
ℝ+) |
| 48 | 41, 47 | ltsubrpd 13109 |
. . . . . . . . . . 11
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 − (1 / (1 − 𝑡))) < 1) |
| 49 | 7, 9, 27, 40, 48 | elicod 13437 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 − (1 / (1 − 𝑡))) ∈
(0[,)1)) |
| 50 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → (1 −
𝑙) = (1 − (1 −
(1 / (1 − 𝑡))))) |
| 51 | 50 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → ((1 −
𝑙) · (𝑝‘𝑖)) = ((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖))) |
| 52 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → (𝑙 · (𝑦‘𝑖)) = ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) |
| 53 | 51, 52 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → (((1 −
𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)))) |
| 54 | 53 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → ((𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ (𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 55 | 54 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑙 = (1 − (1 / (1 −
𝑡))) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 56 | 55 | adantl 481 |
. . . . . . . . . 10
⊢
(((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑙 = (1 − (1 / (1 − 𝑡)))) → (∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 57 | 22, 11 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈
ℂ) |
| 58 | 10, 17 | gtned 11396 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠ 𝑡) |
| 59 | 22, 11, 58 | subne0d 11629 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ≠ 0) |
| 60 | 57, 59 | reccld 12036 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 / (1 −
𝑡)) ∈
ℂ) |
| 61 | 22, 60 | nncand 11625 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1
− (1 / (1 − 𝑡)))) = (1 / (1 − 𝑡))) |
| 62 | 61, 60 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1
− (1 / (1 − 𝑡)))) ∈ ℂ) |
| 63 | 22, 60 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 /
(1 − 𝑡))) ∈
ℂ) |
| 64 | 16 | gt0ne0d 11827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠
0) |
| 65 | 36, 11 | subeq0ad 11630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ (𝑡 − 1) = 𝑡)) |
| 66 | 11, 22, 11 | sub32d 11652 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) − 𝑡) = ((𝑡 − 𝑡) − 1)) |
| 67 | 66 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ ((𝑡 − 𝑡) − 1) = 0)) |
| 68 | 11 | subidd 11608 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 𝑡) = 0) |
| 69 | 68 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 𝑡) − 1) = (0 −
1)) |
| 70 | 69 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 𝑡) − 1) = 0 ↔ (0 − 1) =
0)) |
| 71 | | 0cnd 11254 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ∈
ℂ) |
| 72 | 71, 22, 71 | subaddd 11638 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((0 − 1) =
0 ↔ (1 + 0) = 0)) |
| 73 | 22 | addridd 11461 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 + 0) =
1) |
| 74 | 73 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 + 0) = 0
↔ 1 = 0)) |
| 75 | 72, 74 | bitrd 279 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((0 − 1) =
0 ↔ 1 = 0)) |
| 76 | 67, 70, 75 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ 1 =
0)) |
| 77 | 65, 76 | bitr3d 281 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) = 𝑡 ↔ 1 = 0)) |
| 78 | 77 | necon3bid 2985 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) ≠ 𝑡 ↔ 1 ≠
0)) |
| 79 | 64, 78 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ≠ 𝑡) |
| 80 | 20 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (1 −
(1 / (1 − 𝑡))) ↔
1 = (𝑡 / (𝑡 − 1)))) |
| 81 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (1 =
(𝑡 / (𝑡 − 1)) ↔ (𝑡 / (𝑡 − 1)) = 1) |
| 82 | 11, 36, 22, 23 | divmuld 12065 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) = 1 ↔ ((𝑡 − 1) · 1) = 𝑡)) |
| 83 | 81, 82 | bitrid 283 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (𝑡 / (𝑡 − 1)) ↔ ((𝑡 − 1) · 1) = 𝑡)) |
| 84 | 36 | mulridd 11278 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) · 1) = (𝑡 − 1)) |
| 85 | 84 | eqeq1d 2739 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) · 1) = 𝑡 ↔ (𝑡 − 1) = 𝑡)) |
| 86 | 80, 83, 85 | 3bitrd 305 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (1 −
(1 / (1 − 𝑡))) ↔
(𝑡 − 1) = 𝑡)) |
| 87 | 86 | necon3bid 2985 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 ≠ (1
− (1 / (1 − 𝑡))) ↔ (𝑡 − 1) ≠ 𝑡)) |
| 88 | 79, 87 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠ (1
− (1 / (1 − 𝑡)))) |
| 89 | 22, 63, 88 | subne0d 11629 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1
− (1 / (1 − 𝑡)))) ≠ 0) |
| 90 | 61 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1
− (1 / (1 − 𝑡)))) · (1 − 𝑡)) = ((1 / (1 − 𝑡)) · (1 − 𝑡))) |
| 91 | 57, 59 | recid2d 12039 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 / (1 −
𝑡)) · (1 −
𝑡)) = 1) |
| 92 | 90, 91 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1
− (1 / (1 − 𝑡)))) · (1 − 𝑡)) = 1) |
| 93 | 62, 57, 89, 92 | mvllmuld 12099 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) = (1 / (1 − (1 −
(1 / (1 − 𝑡)))))) |
| 94 | 93 | ad4ant23 753 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) = (1 / (1 − (1 − (1 / (1
− 𝑡)))))) |
| 95 | 94 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖))) |
| 96 | 20 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 /
(1 − 𝑡))) − 1)
= ((𝑡 / (𝑡 − 1)) − 1)) |
| 97 | 20, 96 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 /
(1 − 𝑡))) / ((1
− (1 / (1 − 𝑡))) − 1)) = ((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1))) |
| 98 | | subdivcomb2 11963 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℂ ∧ 1 ∈
ℂ ∧ ((𝑡 −
1) ∈ ℂ ∧ (𝑡
− 1) ≠ 0)) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = ((𝑡 / (𝑡 − 1)) − 1)) |
| 99 | 11, 22, 36, 23, 98 | syl112anc 1376 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = ((𝑡 / (𝑡 − 1)) − 1)) |
| 100 | 84 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − ((𝑡 − 1) · 1)) = (𝑡 − (𝑡 − 1))) |
| 101 | 11, 22 | nncand 11625 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − (𝑡 − 1)) = 1) |
| 102 | 100, 101 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − ((𝑡 − 1) · 1)) =
1) |
| 103 | 102 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = (1 / (𝑡 − 1))) |
| 104 | 99, 103 | eqtr3d 2779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) = (1 / (𝑡 − 1))) |
| 105 | 104 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = ((1 / (𝑡 − 1)) · 𝑡)) |
| 106 | 11, 36, 23 | divrec2d 12047 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) = ((1 / (𝑡 − 1)) · 𝑡)) |
| 107 | 105, 106 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = (𝑡 / (𝑡 − 1))) |
| 108 | 20, 63 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈ ℂ) |
| 109 | 108, 22 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) ∈
ℂ) |
| 110 | 79 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≠ (𝑡 − 1)) |
| 111 | 11, 36, 23, 110 | divne1d 12054 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ≠ 1) |
| 112 | 108, 22, 111 | subne0d 11629 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) ≠
0) |
| 113 | 108, 109,
11, 112 | divmuld 12065 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1)) = 𝑡 ↔ (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = (𝑡 / (𝑡 − 1)))) |
| 114 | 107, 113 | mpbird 257 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1)) = 𝑡) |
| 115 | 97, 114 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 = ((1 − (1 / (1 −
𝑡))) / ((1 − (1 / (1
− 𝑡))) −
1))) |
| 116 | 115 | ad4ant23 753 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 = ((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) −
1))) |
| 117 | 116 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑦‘𝑖)) = (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))) |
| 118 | 95, 117 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖)))) |
| 119 | 118 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 120 | 119 | biimpd 229 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 121 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) ↔ (((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = (𝑥‘𝑖)) |
| 122 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈ (ℝ
↑m (1...𝑁))
→ 𝑥:(1...𝑁)⟶ℝ) |
| 123 | 122 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ) |
| 124 | 123 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → 𝑥:(1...𝑁)⟶ℝ) |
| 125 | 124 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑥:(1...𝑁)⟶ℝ) |
| 126 | 125 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
| 127 | 126 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
| 128 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
| 129 | 11 | ad4ant23 753 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
| 130 | 128, 129 | subcld 11620 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ) |
| 131 | 58 | ad4ant23 753 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑡) |
| 132 | 128, 129,
131 | subne0d 11629 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ≠ 0) |
| 133 | 130, 132 | reccld 12036 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑡)) ∈ ℂ) |
| 134 | 128, 133 | subcld 11620 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / (1 − 𝑡))) ∈
ℂ) |
| 135 | | eldifi 4131 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) → 𝑦 ∈ (ℝ
↑m (1...𝑁))) |
| 136 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈ (ℝ
↑m (1...𝑁))
→ 𝑦:(1...𝑁)⟶ℝ) |
| 137 | 135, 136 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ) |
| 138 | 137 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ) |
| 139 | 138 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → 𝑦:(1...𝑁)⟶ℝ) |
| 140 | 139 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑦:(1...𝑁)⟶ℝ) |
| 141 | 140 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
| 142 | 141 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
| 143 | 134, 142 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)) ∈ ℂ) |
| 144 | 62 | ad4ant23 753 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 − (1 / (1
− 𝑡)))) ∈
ℂ) |
| 145 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ (ℝ
↑m (1...𝑁))
→ 𝑝:(1...𝑁)⟶ℝ) |
| 146 | 145 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → 𝑝:(1...𝑁)⟶ℝ) |
| 147 | 146 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑝:(1...𝑁)⟶ℝ) |
| 148 | 147 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
| 149 | 148 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
| 150 | 144, 149 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) ∈ ℂ) |
| 151 | 127, 143,
150 | subadd2d 11639 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = ((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) ↔ (((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = (𝑥‘𝑖))) |
| 152 | 121, 151 | bitr4id 290 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) ↔ ((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = ((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)))) |
| 153 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = ((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) ↔ ((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) = ((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)))) |
| 154 | 127, 143 | subcld 11620 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) ∈ ℂ) |
| 155 | 89 | ad4ant23 753 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 − (1 / (1
− 𝑡)))) ≠
0) |
| 156 | 154, 144,
149, 155 | divmuld 12065 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) = (𝑝‘𝑖) ↔ ((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) = ((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 157 | | eqcom 2744 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡)))))) |
| 158 | 127, 143,
144, 155 | divsubdird 12082 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) = (((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) − (((1 −
(1 / (1 − 𝑡)))
· (𝑦‘𝑖)) / (1 − (1 − (1 /
(1 − 𝑡))))))) |
| 159 | 127, 144,
155 | divcld 12043 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) ∈
ℂ) |
| 160 | 143, 144,
155 | divcld 12043 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)) / (1 − (1 − (1 / (1 −
𝑡))))) ∈
ℂ) |
| 161 | 159, 160 | negsubd 11626 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) + -(((1 − (1 /
(1 − 𝑡))) ·
(𝑦‘𝑖)) / (1 − (1 − (1 / (1 −
𝑡)))))) = (((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) − (((1 −
(1 / (1 − 𝑡)))
· (𝑦‘𝑖)) / (1 − (1 − (1 /
(1 − 𝑡))))))) |
| 162 | 127, 144,
155 | divrec2d 12047 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) = ((1 / (1 −
(1 − (1 / (1 − 𝑡))))) · (𝑥‘𝑖))) |
| 163 | 143, 144,
155 | divneg2d 12057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / (1 −
𝑡))) · (𝑦‘𝑖)) / (1 − (1 − (1 / (1 −
𝑡))))) = (((1 − (1 /
(1 − 𝑡))) ·
(𝑦‘𝑖)) / -(1 − (1 − (1 / (1 −
𝑡)))))) |
| 164 | 128, 134 | negsubdi2d 11636 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − (1 − (1 / (1
− 𝑡)))) = ((1 −
(1 / (1 − 𝑡)))
− 1)) |
| 165 | 164 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)) / -(1 − (1 − (1 / (1 −
𝑡))))) = (((1 − (1 /
(1 − 𝑡))) ·
(𝑦‘𝑖)) / ((1 − (1 / (1 − 𝑡))) −
1))) |
| 166 | 134, 128 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) − 1) ∈
ℂ) |
| 167 | 88 | necomd 2996 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 /
(1 − 𝑡))) ≠
1) |
| 168 | 63, 22, 167 | subne0d 11629 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 /
(1 − 𝑡))) − 1)
≠ 0) |
| 169 | 168 | ad4ant23 753 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) − 1) ≠
0) |
| 170 | 134, 142,
166, 169 | div23d 12080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)) / ((1 − (1 / (1 − 𝑡))) − 1)) = (((1 −
(1 / (1 − 𝑡))) / ((1
− (1 / (1 − 𝑡))) − 1)) · (𝑦‘𝑖))) |
| 171 | 163, 165,
170 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / (1 −
𝑡))) · (𝑦‘𝑖)) / (1 − (1 − (1 / (1 −
𝑡))))) = (((1 − (1 /
(1 − 𝑡))) / ((1
− (1 / (1 − 𝑡))) − 1)) · (𝑦‘𝑖))) |
| 172 | 162, 171 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) / (1 − (1 − (1 / (1 −
𝑡))))) + -(((1 − (1 /
(1 − 𝑡))) ·
(𝑦‘𝑖)) / (1 − (1 − (1 / (1 −
𝑡)))))) = (((1 / (1 −
(1 − (1 / (1 − 𝑡))))) · (𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖)))) |
| 173 | 158, 161,
172 | 3eqtr2d 2783 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) = (((1 / (1 −
(1 − (1 / (1 − 𝑡))))) · (𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖)))) |
| 174 | 173 | eqeq2d 2748 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 175 | 157, 174 | bitrid 283 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) / (1 − (1 − (1 / (1 −
𝑡))))) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 176 | 156, 175 | bitr3d 281 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 − (1 / (1
− 𝑡)))) ·
(𝑝‘𝑖)) = ((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 177 | 153, 176 | bitrid 283 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥‘𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) = ((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 178 | 152, 177 | bitrd 279 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 / (1 − (1 − (1 / (1
− 𝑡))))) ·
(𝑥‘𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1
− 𝑡))) − 1))
· (𝑦‘𝑖))))) |
| 179 | 120, 178 | sylibrd 259 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 180 | 179 | ralimdva 3167 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖))))) |
| 181 | 180 | imp 406 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − (1 − (1 / (1 −
𝑡)))) · (𝑝‘𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦‘𝑖)))) |
| 182 | 49, 56, 181 | rspcedvd 3624 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖)))) |
| 183 | 182 | 3mix2d 1338 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
| 184 | 183 | exp31 419 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))))) |
| 185 | 184 | com23 86 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (𝑡 < 0 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))))) |
| 186 | 185 | imp 406 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (𝑡 < 0 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
| 187 | | simpr 484 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1)) |
| 188 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡)) |
| 189 | 188 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥‘𝑖)) = ((1 − 𝑡) · (𝑥‘𝑖))) |
| 190 | | oveq1 7438 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑡 → (𝑘 · (𝑦‘𝑖)) = (𝑡 · (𝑦‘𝑖))) |
| 191 | 189, 190 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 192 | 191 | eqeq2d 2748 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑡 → ((𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 193 | 192 | ralbidv 3178 |
. . . . . . . . 9
⊢ (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 194 | 193 | adantl 481 |
. . . . . . . 8
⊢
(((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑘 = 𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))))) |
| 195 | | simplr 769 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) |
| 196 | 187, 194,
195 | rspcedvd 3624 |
. . . . . . 7
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖)))) |
| 197 | 196 | 3mix1d 1337 |
. . . . . 6
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
| 198 | 197 | ex 412 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (𝑡 ∈ (0[,]1) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
| 199 | | 1red 11262 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 1 ∈
ℝ) |
| 200 | | simpl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 𝑡 ∈
ℝ) |
| 201 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 0 ∈
ℝ) |
| 202 | 15 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 0 <
1) |
| 203 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 1 < 𝑡) |
| 204 | 201, 199,
200, 202, 203 | lttrd 11422 |
. . . . . . . . . . . . . . 15
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 0 < 𝑡) |
| 205 | 204 | gt0ne0d 11827 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 𝑡 ≠ 0) |
| 206 | 199, 200,
205 | redivcld 12095 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → (1 / 𝑡) ∈
ℝ) |
| 207 | 200, 204 | recgt0d 12202 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → 0 < (1 / 𝑡)) |
| 208 | | recgt1i 12165 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → (0 < (1 /
𝑡) ∧ (1 / 𝑡) < 1)) |
| 209 | 206 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ ℝ ∧ 1 <
𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) ∈ ℝ) |
| 210 | | 1red 11262 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ ℝ ∧ 1 <
𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → 1 ∈
ℝ) |
| 211 | | simprr 773 |
. . . . . . . . . . . . . . 15
⊢ (((𝑡 ∈ ℝ ∧ 1 <
𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) < 1) |
| 212 | 209, 210,
211 | ltled 11409 |
. . . . . . . . . . . . . 14
⊢ (((𝑡 ∈ ℝ ∧ 1 <
𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) ≤ 1) |
| 213 | 208, 212 | mpdan 687 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → (1 / 𝑡) ≤ 1) |
| 214 | 206, 207,
213 | 3jca 1129 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → ((1 / 𝑡) ∈ ℝ ∧ 0 < (1
/ 𝑡) ∧ (1 / 𝑡) ≤ 1)) |
| 215 | | 1re 11261 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℝ |
| 216 | 6, 215 | pm3.2i 470 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ* ∧ 1 ∈ ℝ) |
| 217 | | elioc2 13450 |
. . . . . . . . . . . . 13
⊢ ((0
∈ ℝ* ∧ 1 ∈ ℝ) → ((1 / 𝑡) ∈ (0(,]1) ↔ ((1 /
𝑡) ∈ ℝ ∧ 0
< (1 / 𝑡) ∧ (1 /
𝑡) ≤
1))) |
| 218 | 216, 217 | mp1i 13 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → ((1 / 𝑡) ∈ (0(,]1) ↔ ((1 /
𝑡) ∈ ℝ ∧ 0
< (1 / 𝑡) ∧ (1 /
𝑡) ≤
1))) |
| 219 | 214, 218 | mpbird 257 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ∧ 1 <
𝑡) → (1 / 𝑡) ∈
(0(,]1)) |
| 220 | 219 | ad4ant23 753 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 / 𝑡) ∈ (0(,]1)) |
| 221 | | oveq2 7439 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (1 / 𝑡) → (1 − 𝑚) = (1 − (1 / 𝑡))) |
| 222 | 221 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (1 / 𝑡) → ((1 − 𝑚) · (𝑥‘𝑖)) = ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) |
| 223 | | oveq1 7438 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = (1 / 𝑡) → (𝑚 · (𝑝‘𝑖)) = ((1 / 𝑡) · (𝑝‘𝑖))) |
| 224 | 222, 223 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (𝑚 = (1 / 𝑡) → (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖)))) |
| 225 | 224 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑚 = (1 / 𝑡) → ((𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ (𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))))) |
| 226 | 225 | ralbidv 3178 |
. . . . . . . . . . 11
⊢ (𝑚 = (1 / 𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))))) |
| 227 | 226 | adantl 481 |
. . . . . . . . . 10
⊢
(((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) ∧ 𝑚 = (1 / 𝑡)) → (∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))))) |
| 228 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑡 ∈
ℝ) |
| 229 | 228 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑡 ∈
ℂ) |
| 230 | 229 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ) |
| 231 | 204 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ → (1 <
𝑡 → 0 < 𝑡)) |
| 232 | | gt0ne0 11728 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑡 ∈ ℝ ∧ 0 <
𝑡) → 𝑡 ≠ 0) |
| 233 | 232 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑡 ∈ ℝ → (0 <
𝑡 → 𝑡 ≠ 0)) |
| 234 | 231, 233 | syld 47 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 ∈ ℝ → (1 <
𝑡 → 𝑡 ≠ 0)) |
| 235 | 234 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (1 < 𝑡 → 𝑡 ≠ 0)) |
| 236 | 235 | imp 406 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑡 ≠ 0) |
| 237 | 236 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ≠ 0) |
| 238 | 230, 237 | reccld 12036 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑡) ∈ ℂ) |
| 239 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ) |
| 240 | 230, 237 | recne0d 12037 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑡) ≠ 0) |
| 241 | 238, 239,
238, 240 | divsubdird 12082 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) − 1) / (1 / 𝑡)) = (((1 / 𝑡) / (1 / 𝑡)) − (1 / (1 / 𝑡)))) |
| 242 | 238, 240 | dividd 12041 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) / (1 / 𝑡)) = 1) |
| 243 | 230, 237 | recrecd 12040 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 / 𝑡)) = 𝑡) |
| 244 | 242, 243 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) / (1 / 𝑡)) − (1 / (1 / 𝑡))) = (1 − 𝑡)) |
| 245 | 241, 244 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) = (((1 / 𝑡) − 1) / (1 / 𝑡))) |
| 246 | 245 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝑥‘𝑖)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) |
| 247 | 229, 236 | recrecd 12040 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → (1 / (1 / 𝑡)) = 𝑡) |
| 248 | 247 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑡 = (1 / (1 / 𝑡))) |
| 249 | 248 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 = (1 / (1 / 𝑡))) |
| 250 | 249 | oveq1d 7446 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑦‘𝑖)) = ((1 / (1 / 𝑡)) · (𝑦‘𝑖))) |
| 251 | 246, 250 | oveq12d 7449 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖)))) |
| 252 | 251 | eqeq2d 2748 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) ↔ (𝑝‘𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖))))) |
| 253 | 252 | biimpd 229 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (𝑝‘𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖))))) |
| 254 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))) ↔ (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))) = (𝑦‘𝑖)) |
| 255 | 139 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑦:(1...𝑁)⟶ℝ) |
| 256 | 255 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℝ) |
| 257 | 256 | recnd 11289 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦‘𝑖) ∈ ℂ) |
| 258 | 239, 238 | subcld 11620 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑡)) ∈ ℂ) |
| 259 | 124 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑥:(1...𝑁)⟶ℝ) |
| 260 | 259 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℝ) |
| 261 | 260 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥‘𝑖) ∈ ℂ) |
| 262 | 258, 261 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑡)) · (𝑥‘𝑖)) ∈ ℂ) |
| 263 | 146 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → 𝑝:(1...𝑁)⟶ℝ) |
| 264 | 263 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℝ) |
| 265 | 264 | recnd 11289 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝‘𝑖) ∈ ℂ) |
| 266 | 238, 265 | mulcld 11281 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) · (𝑝‘𝑖)) ∈ ℂ) |
| 267 | 257, 262,
266 | subaddd 11638 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) = ((1 / 𝑡) · (𝑝‘𝑖)) ↔ (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))) = (𝑦‘𝑖))) |
| 268 | 254, 267 | bitr4id 290 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))) ↔ ((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) = ((1 / 𝑡) · (𝑝‘𝑖)))) |
| 269 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) = ((1 / 𝑡) · (𝑝‘𝑖)) ↔ ((1 / 𝑡) · (𝑝‘𝑖)) = ((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖)))) |
| 270 | 257, 262 | subcld 11620 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) ∈ ℂ) |
| 271 | 270, 238,
265, 240 | divmuld 12065 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (𝑝‘𝑖) ↔ ((1 / 𝑡) · (𝑝‘𝑖)) = ((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))))) |
| 272 | 269, 271 | bitr4id 290 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) = ((1 / 𝑡) · (𝑝‘𝑖)) ↔ (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (𝑝‘𝑖))) |
| 273 | | eqcom 2744 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡))) |
| 274 | 257, 262,
238, 240 | divsubdird 12082 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (((𝑦‘𝑖) / (1 / 𝑡)) − (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)))) |
| 275 | 257, 238,
240 | divcld 12043 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) / (1 / 𝑡)) ∈ ℂ) |
| 276 | 262, 238,
240 | divcld 12043 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) ∈ ℂ) |
| 277 | 275, 276 | negsubd 11626 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡))) = (((𝑦‘𝑖) / (1 / 𝑡)) − (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)))) |
| 278 | 262, 238,
240 | divnegd 12056 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) = (-((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡))) |
| 279 | 258, 261 | mulneg1d 11716 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − (1 / 𝑡)) · (𝑥‘𝑖)) = -((1 − (1 / 𝑡)) · (𝑥‘𝑖))) |
| 280 | 279 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − (1 / 𝑡)) · (𝑥‘𝑖)) = (-(1 − (1 / 𝑡)) · (𝑥‘𝑖))) |
| 281 | 280 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) = ((-(1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡))) |
| 282 | 239, 238 | negsubdi2d 11636 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − (1 / 𝑡)) = ((1 / 𝑡) − 1)) |
| 283 | 282 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − (1 / 𝑡)) · (𝑥‘𝑖)) = (((1 / 𝑡) − 1) · (𝑥‘𝑖))) |
| 284 | 283 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((-(1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) · (𝑥‘𝑖)) / (1 / 𝑡))) |
| 285 | 238, 239 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) − 1) ∈ ℂ) |
| 286 | 285, 261,
238, 240 | div23d 12080 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 / 𝑡) − 1) · (𝑥‘𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) |
| 287 | 284, 286 | eqtrd 2777 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((-(1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) |
| 288 | 278, 281,
287 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) |
| 289 | 288 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡))) = (((𝑦‘𝑖) / (1 / 𝑡)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)))) |
| 290 | 257, 238,
240 | divrec2d 12047 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) / (1 / 𝑡)) = ((1 / (1 / 𝑡)) · (𝑦‘𝑖))) |
| 291 | 290 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / (1 / 𝑡)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) = (((1 / (1 / 𝑡)) · (𝑦‘𝑖)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)))) |
| 292 | 238, 240 | reccld 12036 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 / 𝑡)) ∈ ℂ) |
| 293 | 292, 257 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 / 𝑡)) · (𝑦‘𝑖)) ∈ ℂ) |
| 294 | 285, 238,
240 | divcld 12043 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) − 1) / (1 / 𝑡)) ∈ ℂ) |
| 295 | 294, 261 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) ∈ ℂ) |
| 296 | 293, 295 | addcomd 11463 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 / 𝑡)) · (𝑦‘𝑖)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖)))) |
| 297 | 289, 291,
296 | 3eqtrd 2781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥‘𝑖)) / (1 / 𝑡))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖)))) |
| 298 | 274, 277,
297 | 3eqtr2d 2783 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖)))) |
| 299 | 298 | eqeq2d 2748 |
. . . . . . . . . . . . . . 15
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) ↔ (𝑝‘𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖))))) |
| 300 | 273, 299 | bitrid 283 |
. . . . . . . . . . . . . 14
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦‘𝑖) − ((1 − (1 / 𝑡)) · (𝑥‘𝑖))) / (1 / 𝑡)) = (𝑝‘𝑖) ↔ (𝑝‘𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖))))) |
| 301 | 268, 272,
300 | 3bitrd 305 |
. . . . . . . . . . . . 13
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))) ↔ (𝑝‘𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / (1 / 𝑡)) · (𝑦‘𝑖))))) |
| 302 | 253, 301 | sylibrd 259 |
. . . . . . . . . . . 12
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))))) |
| 303 | 302 | ralimdva 3167 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖))))) |
| 304 | 303 | imp 406 |
. . . . . . . . . 10
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − (1 / 𝑡)) · (𝑥‘𝑖)) + ((1 / 𝑡) · (𝑝‘𝑖)))) |
| 305 | 220, 227,
304 | rspcedvd 3624 |
. . . . . . . . 9
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))) |
| 306 | 305 | 3mix3d 1339 |
. . . . . . . 8
⊢
((((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 <
𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))) |
| 307 | 306 | exp31 419 |
. . . . . . 7
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (1 < 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))))) |
| 308 | 307 | com23 86 |
. . . . . 6
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (1 < 𝑡 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))))) |
| 309 | 308 | imp 406 |
. . . . 5
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → (1 < 𝑡 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
| 310 | 186, 198,
309 | 3jaod 1431 |
. . . 4
⊢
(((((𝑁 ∈
ℕ ∧ 𝑥 ∈
(ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m
(1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m
(1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧
∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖)))) → ((𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
| 311 | 310 | ex 412 |
. . 3
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → ((𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖))))))) |
| 312 | 5, 311 | mpid 44 |
. 2
⊢ ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |
| 313 | 312 | rexlimdva 3155 |
1
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ
↑m (1...𝑁))
∧ 𝑦 ∈ ((ℝ
↑m (1...𝑁))
∖ {𝑥})) ∧ 𝑝 ∈ (ℝ
↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑦‘𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝‘𝑖) = (((1 − 𝑘) · (𝑥‘𝑖)) + (𝑘 · (𝑦‘𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥‘𝑖) = (((1 − 𝑙) · (𝑝‘𝑖)) + (𝑙 · (𝑦‘𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦‘𝑖) = (((1 − 𝑚) · (𝑥‘𝑖)) + (𝑚 · (𝑝‘𝑖)))))) |