Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eenglngeehlnmlem2 Structured version   Visualization version   GIF version

Theorem eenglngeehlnmlem2 46814
Description: Lemma 2 for eenglngeehlnm 46815. (Contributed by AV, 15-Feb-2023.)
Assertion
Ref Expression
eenglngeehlnmlem2 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
Distinct variable group:   𝑖,𝑁,𝑘,𝑙,𝑚,𝑝,𝑡,𝑥,𝑦

Proof of Theorem eenglngeehlnmlem2
StepHypRef Expression
1 0red 11158 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
2 1red 11156 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
3 simpr 485 . . . 4 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
4 reorelicc 46786 . . . 4 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡))
51, 2, 3, 4syl3anc 1371 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡))
6 0xr 11202 . . . . . . . . . . . 12 0 ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → 0 ∈ ℝ*)
8 1xr 11214 . . . . . . . . . . . 12 1 ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → 1 ∈ ℝ*)
10 simpl 483 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ∈ ℝ)
1110recnd 11183 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ∈ ℂ)
12 0red 11158 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ∈ ℝ)
13 1red 11156 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ∈ ℝ)
14 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 < 0)
15 0lt1 11677 . . . . . . . . . . . . . . . . 17 0 < 1
1615a1i 11 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 < 1)
1710, 12, 13, 14, 16lttrd 11316 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 < 1)
1810, 17ltned 11291 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≠ 1)
19 1subrec1sub 46781 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℂ ∧ 𝑡 ≠ 1) → (1 − (1 / (1 − 𝑡))) = (𝑡 / (𝑡 − 1)))
2011, 18, 19syl2anc 584 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 / (1 − 𝑡))) = (𝑡 / (𝑡 − 1)))
2110, 13resubcld 11583 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ∈ ℝ)
22 1cnd 11150 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ∈ ℂ)
2311, 22, 18subne0d 11521 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ≠ 0)
2410, 21, 23redivcld 11983 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈ ℝ)
2524rexrd 11205 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈ ℝ*)
2620, 25eqeltrd 2838 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 / (1 − 𝑡))) ∈ ℝ*)
2726ad4ant23 751 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 − (1 / (1 − 𝑡))) ∈ ℝ*)
2810renegcld 11582 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → -𝑡 ∈ ℝ)
2910, 13sublt0d 11781 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) < 0 ↔ 𝑡 < 1))
3017, 29mpbird 256 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) < 0)
3121, 30negelrpd 12949 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → -(𝑡 − 1) ∈ ℝ+)
3210, 12, 14ltled 11303 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≤ 0)
3310le0neg1d 11726 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 ≤ 0 ↔ 0 ≤ -𝑡))
3432, 33mpbid 231 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ -𝑡)
3528, 31, 34divge0d 12997 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ (-𝑡 / -(𝑡 − 1)))
3621recnd 11183 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ∈ ℂ)
3711, 36, 23div2negd 11946 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (-𝑡 / -(𝑡 − 1)) = (𝑡 / (𝑡 − 1)))
3820, 37eqtr4d 2779 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 / (1 − 𝑡))) = (-𝑡 / -(𝑡 − 1)))
3935, 38breqtrrd 5133 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ≤ (1 − (1 / (1 − 𝑡))))
4039ad4ant23 751 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → 0 ≤ (1 − (1 / (1 − 𝑡))))
41 1red 11156 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → 1 ∈ ℝ)
4213, 10resubcld 11583 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈ ℝ)
4310, 13posdifd 11742 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 < 1 ↔ 0 < (1 − 𝑡)))
4417, 43mpbid 231 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 < (1 − 𝑡))
4542, 44elrpd 12954 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈ ℝ+)
4645ad4ant23 751 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 − 𝑡) ∈ ℝ+)
4746rpreccld 12967 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 / (1 − 𝑡)) ∈ ℝ+)
4841, 47ltsubrpd 12989 . . . . . . . . . . 11 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 − (1 / (1 − 𝑡))) < 1)
497, 9, 27, 40, 48elicod 13314 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 − (1 / (1 − 𝑡))) ∈ (0[,)1))
50 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑙 = (1 − (1 / (1 − 𝑡))) → (1 − 𝑙) = (1 − (1 − (1 / (1 − 𝑡)))))
5150oveq1d 7372 . . . . . . . . . . . . . 14 (𝑙 = (1 − (1 / (1 − 𝑡))) → ((1 − 𝑙) · (𝑝𝑖)) = ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)))
52 oveq1 7364 . . . . . . . . . . . . . 14 (𝑙 = (1 − (1 / (1 − 𝑡))) → (𝑙 · (𝑦𝑖)) = ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))
5351, 52oveq12d 7375 . . . . . . . . . . . . 13 (𝑙 = (1 − (1 / (1 − 𝑡))) → (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))))
5453eqeq2d 2747 . . . . . . . . . . . 12 (𝑙 = (1 − (1 / (1 − 𝑡))) → ((𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ (𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
5554ralbidv 3174 . . . . . . . . . . 11 (𝑙 = (1 − (1 / (1 − 𝑡))) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
5655adantl 482 . . . . . . . . . 10 (((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑙 = (1 − (1 / (1 − 𝑡)))) → (∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
5722, 11subcld 11512 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ∈ ℂ)
5810, 17gtned 11290 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠ 𝑡)
5922, 11, 58subne0d 11521 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) ≠ 0)
6057, 59reccld 11924 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 / (1 − 𝑡)) ∈ ℂ)
6122, 60nncand 11517 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 − (1 / (1 − 𝑡)))) = (1 / (1 − 𝑡)))
6261, 60eqeltrd 2838 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 − (1 / (1 − 𝑡)))) ∈ ℂ)
6322, 60subcld 11512 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 / (1 − 𝑡))) ∈ ℂ)
6416gt0ne0d 11719 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠ 0)
6536, 11subeq0ad 11522 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ (𝑡 − 1) = 𝑡))
6611, 22, 11sub32d 11544 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) − 𝑡) = ((𝑡𝑡) − 1))
6766eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ ((𝑡𝑡) − 1) = 0))
6811subidd 11500 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡𝑡) = 0)
6968oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡𝑡) − 1) = (0 − 1))
7069eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡𝑡) − 1) = 0 ↔ (0 − 1) = 0))
71 0cnd 11148 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 0 ∈ ℂ)
7271, 22, 71subaddd 11530 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((0 − 1) = 0 ↔ (1 + 0) = 0))
7322addid1d 11355 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 + 0) = 1)
7473eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 + 0) = 0 ↔ 1 = 0))
7572, 74bitrd 278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((0 − 1) = 0 ↔ 1 = 0))
7667, 70, 753bitrd 304 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) − 𝑡) = 0 ↔ 1 = 0))
7765, 76bitr3d 280 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) = 𝑡 ↔ 1 = 0))
7877necon3bid 2988 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) ≠ 𝑡 ↔ 1 ≠ 0))
7964, 78mpbird 256 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − 1) ≠ 𝑡)
8020eqeq2d 2747 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (1 − (1 / (1 − 𝑡))) ↔ 1 = (𝑡 / (𝑡 − 1))))
81 eqcom 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 = (𝑡 / (𝑡 − 1)) ↔ (𝑡 / (𝑡 − 1)) = 1)
8211, 36, 22, 23divmuld 11953 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) = 1 ↔ ((𝑡 − 1) · 1) = 𝑡))
8381, 82bitrid 282 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (𝑡 / (𝑡 − 1)) ↔ ((𝑡 − 1) · 1) = 𝑡))
8436mulid1d 11172 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − 1) · 1) = (𝑡 − 1))
8584eqeq1d 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 − 1) · 1) = 𝑡 ↔ (𝑡 − 1) = 𝑡))
8680, 83, 853bitrd 304 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 = (1 − (1 / (1 − 𝑡))) ↔ (𝑡 − 1) = 𝑡))
8786necon3bid 2988 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 ≠ (1 − (1 / (1 − 𝑡))) ↔ (𝑡 − 1) ≠ 𝑡))
8879, 87mpbird 256 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 1 ≠ (1 − (1 / (1 − 𝑡))))
8922, 63, 88subne0d 11521 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 − (1 / (1 − 𝑡)))) ≠ 0)
9061oveq1d 7372 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 − (1 / (1 − 𝑡)))) · (1 − 𝑡)) = ((1 / (1 − 𝑡)) · (1 − 𝑡)))
9157, 59recid2d 11927 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 / (1 − 𝑡)) · (1 − 𝑡)) = 1)
9290, 91eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 − (1 / (1 − 𝑡)))) · (1 − 𝑡)) = 1)
9362, 57, 89, 92mvllmuld 11987 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − 𝑡) = (1 / (1 − (1 − (1 / (1 − 𝑡))))))
9493ad4ant23 751 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) = (1 / (1 − (1 − (1 / (1 − 𝑡))))))
9594oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝑥𝑖)) = ((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)))
9620oveq1d 7372 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 / (1 − 𝑡))) − 1) = ((𝑡 / (𝑡 − 1)) − 1))
9720, 96oveq12d 7375 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) = ((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1)))
98 subdivcomb2 11851 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℂ ∧ 1 ∈ ℂ ∧ ((𝑡 − 1) ∈ ℂ ∧ (𝑡 − 1) ≠ 0)) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = ((𝑡 / (𝑡 − 1)) − 1))
9911, 22, 36, 23, 98syl112anc 1374 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = ((𝑡 / (𝑡 − 1)) − 1))
10084oveq2d 7373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − ((𝑡 − 1) · 1)) = (𝑡 − (𝑡 − 1)))
10111, 22nncand 11517 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − (𝑡 − 1)) = 1)
102100, 101eqtrd 2776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 − ((𝑡 − 1) · 1)) = 1)
103102oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 − ((𝑡 − 1) · 1)) / (𝑡 − 1)) = (1 / (𝑡 − 1)))
10499, 103eqtr3d 2778 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) = (1 / (𝑡 − 1)))
105104oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = ((1 / (𝑡 − 1)) · 𝑡))
10611, 36, 23divrec2d 11935 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) = ((1 / (𝑡 − 1)) · 𝑡))
107105, 106eqtr4d 2779 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = (𝑡 / (𝑡 − 1)))
10820, 63eqeltrrd 2839 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ∈ ℂ)
109108, 22subcld 11512 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) ∈ ℂ)
11079necomd 2999 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 ≠ (𝑡 − 1))
11111, 36, 23, 110divne1d 11942 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (𝑡 / (𝑡 − 1)) ≠ 1)
112108, 22, 111subne0d 11521 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) − 1) ≠ 0)
113108, 109, 11, 112divmuld 11953 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1)) = 𝑡 ↔ (((𝑡 / (𝑡 − 1)) − 1) · 𝑡) = (𝑡 / (𝑡 − 1))))
114107, 113mpbird 256 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((𝑡 / (𝑡 − 1)) / ((𝑡 / (𝑡 − 1)) − 1)) = 𝑡)
11597, 114eqtr2d 2777 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → 𝑡 = ((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)))
116115ad4ant23 751 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 = ((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)))
117116oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑦𝑖)) = (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))
11895, 117oveq12d 7375 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖))))
119118eqeq2d 2747 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
120119biimpd 228 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
121 eqcom 2743 . . . . . . . . . . . . . . 15 ((𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) ↔ (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = (𝑥𝑖))
122 elmapi 8787 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ↑m (1...𝑁)) → 𝑥:(1...𝑁)⟶ℝ)
1231223ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑥:(1...𝑁)⟶ℝ)
124123adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → 𝑥:(1...𝑁)⟶ℝ)
125124ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑥:(1...𝑁)⟶ℝ)
126125ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
127126recnd 11183 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
128 1cnd 11150 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
12911ad4ant23 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
130128, 129subcld 11512 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ∈ ℂ)
13158ad4ant23 751 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → 1 ≠ 𝑡)
132128, 129, 131subne0d 11521 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) ≠ 0)
133130, 132reccld 11924 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 − 𝑡)) ∈ ℂ)
134128, 133subcld 11512 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / (1 − 𝑡))) ∈ ℂ)
135 eldifi 4086 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦 ∈ (ℝ ↑m (1...𝑁)))
136 elmapi 8787 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (ℝ ↑m (1...𝑁)) → 𝑦:(1...𝑁)⟶ℝ)
137135, 136syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥}) → 𝑦:(1...𝑁)⟶ℝ)
1381373ad2ant3 1135 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) → 𝑦:(1...𝑁)⟶ℝ)
139138adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → 𝑦:(1...𝑁)⟶ℝ)
140139ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑦:(1...𝑁)⟶ℝ)
141140ffvelcdmda 7035 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
142141recnd 11183 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
143134, 142mulcld 11175 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) ∈ ℂ)
14462ad4ant23 751 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 − (1 / (1 − 𝑡)))) ∈ ℂ)
145 elmapi 8787 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 ∈ (ℝ ↑m (1...𝑁)) → 𝑝:(1...𝑁)⟶ℝ)
146145adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → 𝑝:(1...𝑁)⟶ℝ)
147146ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → 𝑝:(1...𝑁)⟶ℝ)
148147ffvelcdmda 7035 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
149148recnd 11183 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
150144, 149mulcld 11175 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) ∈ ℂ)
151127, 143, 150subadd2d 11531 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) ↔ (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = (𝑥𝑖)))
152121, 151bitr4id 289 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) ↔ ((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖))))
153 eqcom 2743 . . . . . . . . . . . . . . 15 (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) ↔ ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) = ((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))))
154127, 143subcld 11512 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) ∈ ℂ)
15589ad4ant23 751 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 − (1 / (1 − 𝑡)))) ≠ 0)
156154, 144, 149, 155divmuld 11953 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) = (𝑝𝑖) ↔ ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) = ((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
157 eqcom 2743 . . . . . . . . . . . . . . . . 17 ((((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))))
158127, 143, 144, 155divsubdird 11970 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) = (((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) − (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡)))))))
159127, 144, 155divcld 11931 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) ∈ ℂ)
160143, 144, 155divcld 11931 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡))))) ∈ ℂ)
161159, 160negsubd 11518 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) + -(((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡)))))) = (((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) − (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡)))))))
162127, 144, 155divrec2d 11935 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) = ((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)))
163143, 144, 155divneg2d 11945 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡))))) = (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / -(1 − (1 − (1 / (1 − 𝑡))))))
164128, 134negsubdi2d 11528 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − (1 − (1 / (1 − 𝑡)))) = ((1 − (1 / (1 − 𝑡))) − 1))
165164oveq2d 7373 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / -(1 − (1 − (1 / (1 − 𝑡))))) = (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / ((1 − (1 / (1 − 𝑡))) − 1)))
166134, 128subcld 11512 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) − 1) ∈ ℂ)
16788necomd 2999 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → (1 − (1 / (1 − 𝑡))) ≠ 1)
16863, 22, 167subne0d 11521 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑡 ∈ ℝ ∧ 𝑡 < 0) → ((1 − (1 / (1 − 𝑡))) − 1) ≠ 0)
169168ad4ant23 751 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / (1 − 𝑡))) − 1) ≠ 0)
170134, 142, 166, 169div23d 11968 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / ((1 − (1 / (1 − 𝑡))) − 1)) = (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))
171163, 165, 1703eqtrd 2780 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡))))) = (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))
172162, 171oveq12d 7375 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) / (1 − (1 − (1 / (1 − 𝑡))))) + -(((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)) / (1 − (1 − (1 / (1 − 𝑡)))))) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖))))
173158, 161, 1723eqtr2d 2782 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖))))
174173eqeq2d 2747 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
175157, 174bitrid 282 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) / (1 − (1 − (1 / (1 − 𝑡))))) = (𝑝𝑖) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
176156, 175bitr3d 280 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) = ((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
177153, 176bitrid 282 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑥𝑖) − ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) = ((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
178152, 177bitrd 278 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 / (1 − (1 − (1 / (1 − 𝑡))))) · (𝑥𝑖)) + (((1 − (1 / (1 − 𝑡))) / ((1 − (1 / (1 − 𝑡))) − 1)) · (𝑦𝑖)))))
179120, 178sylibrd 258 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
180179ralimdva 3164 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖)))))
181180imp 407 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − (1 − (1 / (1 − 𝑡)))) · (𝑝𝑖)) + ((1 − (1 / (1 − 𝑡))) · (𝑦𝑖))))
18249, 56, 181rspcedvd 3583 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))))
1831823mix2d 1337 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 𝑡 < 0) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
184183exp31 420 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (𝑡 < 0 → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))))
185184com23 86 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (𝑡 < 0 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))))
186185imp 407 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (𝑡 < 0 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
187 simpr 485 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
188 oveq2 7365 . . . . . . . . . . . . 13 (𝑘 = 𝑡 → (1 − 𝑘) = (1 − 𝑡))
189188oveq1d 7372 . . . . . . . . . . . 12 (𝑘 = 𝑡 → ((1 − 𝑘) · (𝑥𝑖)) = ((1 − 𝑡) · (𝑥𝑖)))
190 oveq1 7364 . . . . . . . . . . . 12 (𝑘 = 𝑡 → (𝑘 · (𝑦𝑖)) = (𝑡 · (𝑦𝑖)))
191189, 190oveq12d 7375 . . . . . . . . . . 11 (𝑘 = 𝑡 → (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
192191eqeq2d 2747 . . . . . . . . . 10 (𝑘 = 𝑡 → ((𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
193192ralbidv 3174 . . . . . . . . 9 (𝑘 = 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
194193adantl 482 . . . . . . . 8 (((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑡 ∈ (0[,]1)) ∧ 𝑘 = 𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))))
195 simplr 767 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))))
196187, 194, 195rspcedvd 3583 . . . . . . 7 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → ∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))))
1971963mix1d 1336 . . . . . 6 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑡 ∈ (0[,]1)) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
198197ex 413 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (𝑡 ∈ (0[,]1) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
199 1red 11156 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 1 ∈ ℝ)
200 simpl 483 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 𝑡 ∈ ℝ)
201 0red 11158 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 0 ∈ ℝ)
20215a1i 11 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 0 < 1)
203 simpr 485 . . . . . . . . . . . . . . . 16 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 1 < 𝑡)
204201, 199, 200, 202, 203lttrd 11316 . . . . . . . . . . . . . . 15 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 0 < 𝑡)
205204gt0ne0d 11719 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 𝑡 ≠ 0)
206199, 200, 205redivcld 11983 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → (1 / 𝑡) ∈ ℝ)
207200, 204recgt0d 12089 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → 0 < (1 / 𝑡))
208 recgt1i 12052 . . . . . . . . . . . . . 14 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1))
209206adantr 481 . . . . . . . . . . . . . . 15 (((𝑡 ∈ ℝ ∧ 1 < 𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) ∈ ℝ)
210 1red 11156 . . . . . . . . . . . . . . 15 (((𝑡 ∈ ℝ ∧ 1 < 𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → 1 ∈ ℝ)
211 simprr 771 . . . . . . . . . . . . . . 15 (((𝑡 ∈ ℝ ∧ 1 < 𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) < 1)
212209, 210, 211ltled 11303 . . . . . . . . . . . . . 14 (((𝑡 ∈ ℝ ∧ 1 < 𝑡) ∧ (0 < (1 / 𝑡) ∧ (1 / 𝑡) < 1)) → (1 / 𝑡) ≤ 1)
213208, 212mpdan 685 . . . . . . . . . . . . 13 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → (1 / 𝑡) ≤ 1)
214206, 207, 2133jca 1128 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → ((1 / 𝑡) ∈ ℝ ∧ 0 < (1 / 𝑡) ∧ (1 / 𝑡) ≤ 1))
215 1re 11155 . . . . . . . . . . . . . 14 1 ∈ ℝ
2166, 215pm3.2i 471 . . . . . . . . . . . . 13 (0 ∈ ℝ* ∧ 1 ∈ ℝ)
217 elioc2 13327 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → ((1 / 𝑡) ∈ (0(,]1) ↔ ((1 / 𝑡) ∈ ℝ ∧ 0 < (1 / 𝑡) ∧ (1 / 𝑡) ≤ 1)))
218216, 217mp1i 13 . . . . . . . . . . . 12 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → ((1 / 𝑡) ∈ (0(,]1) ↔ ((1 / 𝑡) ∈ ℝ ∧ 0 < (1 / 𝑡) ∧ (1 / 𝑡) ≤ 1)))
219214, 218mpbird 256 . . . . . . . . . . 11 ((𝑡 ∈ ℝ ∧ 1 < 𝑡) → (1 / 𝑡) ∈ (0(,]1))
220219ad4ant23 751 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 / 𝑡) ∈ (0(,]1))
221 oveq2 7365 . . . . . . . . . . . . . . 15 (𝑚 = (1 / 𝑡) → (1 − 𝑚) = (1 − (1 / 𝑡)))
222221oveq1d 7372 . . . . . . . . . . . . . 14 (𝑚 = (1 / 𝑡) → ((1 − 𝑚) · (𝑥𝑖)) = ((1 − (1 / 𝑡)) · (𝑥𝑖)))
223 oveq1 7364 . . . . . . . . . . . . . 14 (𝑚 = (1 / 𝑡) → (𝑚 · (𝑝𝑖)) = ((1 / 𝑡) · (𝑝𝑖)))
224222, 223oveq12d 7375 . . . . . . . . . . . . 13 (𝑚 = (1 / 𝑡) → (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))))
225224eqeq2d 2747 . . . . . . . . . . . 12 (𝑚 = (1 / 𝑡) → ((𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ (𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖)))))
226225ralbidv 3174 . . . . . . . . . . 11 (𝑚 = (1 / 𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖)))))
227226adantl 482 . . . . . . . . . 10 (((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) ∧ 𝑚 = (1 / 𝑡)) → (∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖)))))
228 simplr 767 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑡 ∈ ℝ)
229228recnd 11183 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑡 ∈ ℂ)
230229adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ∈ ℂ)
231204ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → (1 < 𝑡 → 0 < 𝑡))
232 gt0ne0 11620 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ℝ ∧ 0 < 𝑡) → 𝑡 ≠ 0)
233232ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑡 ∈ ℝ → (0 < 𝑡𝑡 ≠ 0))
234231, 233syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑡 ∈ ℝ → (1 < 𝑡𝑡 ≠ 0))
235234adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (1 < 𝑡𝑡 ≠ 0))
236235imp 407 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑡 ≠ 0)
237236adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 ≠ 0)
238230, 237reccld 11924 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑡) ∈ ℂ)
239 1cnd 11150 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 1 ∈ ℂ)
240230, 237recne0d 11925 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / 𝑡) ≠ 0)
241238, 239, 238, 240divsubdird 11970 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) − 1) / (1 / 𝑡)) = (((1 / 𝑡) / (1 / 𝑡)) − (1 / (1 / 𝑡))))
242238, 240dividd 11929 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) / (1 / 𝑡)) = 1)
243230, 237recrecd 11928 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 / 𝑡)) = 𝑡)
244242, 243oveq12d 7375 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) / (1 / 𝑡)) − (1 / (1 / 𝑡))) = (1 − 𝑡))
245241, 244eqtr2d 2777 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 − 𝑡) = (((1 / 𝑡) − 1) / (1 / 𝑡)))
246245oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − 𝑡) · (𝑥𝑖)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)))
247229, 236recrecd 11928 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → (1 / (1 / 𝑡)) = 𝑡)
248247eqcomd 2742 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑡 = (1 / (1 / 𝑡)))
249248adantr 481 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → 𝑡 = (1 / (1 / 𝑡)))
250249oveq1d 7372 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑡 · (𝑦𝑖)) = ((1 / (1 / 𝑡)) · (𝑦𝑖)))
251246, 250oveq12d 7375 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖))))
252251eqeq2d 2747 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) ↔ (𝑝𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖)))))
253252biimpd 228 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (𝑝𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖)))))
254 eqcom 2743 . . . . . . . . . . . . . . 15 ((𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))) ↔ (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))) = (𝑦𝑖))
255139ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑦:(1...𝑁)⟶ℝ)
256255ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℝ)
257256recnd 11183 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑦𝑖) ∈ ℂ)
258239, 238subcld 11512 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 − (1 / 𝑡)) ∈ ℂ)
259124ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑥:(1...𝑁)⟶ℝ)
260259ffvelcdmda 7035 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℝ)
261260recnd 11183 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑥𝑖) ∈ ℂ)
262258, 261mulcld 11175 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 − (1 / 𝑡)) · (𝑥𝑖)) ∈ ℂ)
263146ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → 𝑝:(1...𝑁)⟶ℝ)
264263ffvelcdmda 7035 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℝ)
265264recnd 11183 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (𝑝𝑖) ∈ ℂ)
266238, 265mulcld 11175 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) · (𝑝𝑖)) ∈ ℂ)
267257, 262, 266subaddd 11530 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) = ((1 / 𝑡) · (𝑝𝑖)) ↔ (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))) = (𝑦𝑖)))
268254, 267bitr4id 289 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))) ↔ ((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) = ((1 / 𝑡) · (𝑝𝑖))))
269 eqcom 2743 . . . . . . . . . . . . . . 15 (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) = ((1 / 𝑡) · (𝑝𝑖)) ↔ ((1 / 𝑡) · (𝑝𝑖)) = ((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))))
270257, 262subcld 11512 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) ∈ ℂ)
271270, 238, 265, 240divmuld 11953 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (𝑝𝑖) ↔ ((1 / 𝑡) · (𝑝𝑖)) = ((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖)))))
272269, 271bitr4id 289 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) = ((1 / 𝑡) · (𝑝𝑖)) ↔ (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (𝑝𝑖)))
273 eqcom 2743 . . . . . . . . . . . . . . 15 ((((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)))
274257, 262, 238, 240divsubdird 11970 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (((𝑦𝑖) / (1 / 𝑡)) − (((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡))))
275257, 238, 240divcld 11931 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) / (1 / 𝑡)) ∈ ℂ)
276262, 238, 240divcld 11931 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) ∈ ℂ)
277275, 276negsubd 11518 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡))) = (((𝑦𝑖) / (1 / 𝑡)) − (((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡))))
278262, 238, 240divnegd 11944 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) = (-((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)))
279258, 261mulneg1d 11608 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − (1 / 𝑡)) · (𝑥𝑖)) = -((1 − (1 / 𝑡)) · (𝑥𝑖)))
280279eqcomd 2742 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -((1 − (1 / 𝑡)) · (𝑥𝑖)) = (-(1 − (1 / 𝑡)) · (𝑥𝑖)))
281280oveq1d 7372 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) = ((-(1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)))
282239, 238negsubdi2d 11528 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(1 − (1 / 𝑡)) = ((1 / 𝑡) − 1))
283282oveq1d 7372 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (-(1 − (1 / 𝑡)) · (𝑥𝑖)) = (((1 / 𝑡) − 1) · (𝑥𝑖)))
284283oveq1d 7372 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((-(1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) · (𝑥𝑖)) / (1 / 𝑡)))
285238, 239subcld 11512 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / 𝑡) − 1) ∈ ℂ)
286285, 261, 238, 240div23d 11968 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 / 𝑡) − 1) · (𝑥𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)))
287284, 286eqtrd 2776 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((-(1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)))
288278, 281, 2873eqtrd 2780 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → -(((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡)) = ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)))
289288oveq2d 7373 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡))) = (((𝑦𝑖) / (1 / 𝑡)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖))))
290257, 238, 240divrec2d 11935 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) / (1 / 𝑡)) = ((1 / (1 / 𝑡)) · (𝑦𝑖)))
291290oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / (1 / 𝑡)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖))) = (((1 / (1 / 𝑡)) · (𝑦𝑖)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖))))
292238, 240reccld 11924 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (1 / (1 / 𝑡)) ∈ ℂ)
293292, 257mulcld 11175 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((1 / (1 / 𝑡)) · (𝑦𝑖)) ∈ ℂ)
294285, 238, 240divcld 11931 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / 𝑡) − 1) / (1 / 𝑡)) ∈ ℂ)
295294, 261mulcld 11175 . . . . . . . . . . . . . . . . . . 19 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) ∈ ℂ)
296293, 295addcomd 11357 . . . . . . . . . . . . . . . . . 18 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((1 / (1 / 𝑡)) · (𝑦𝑖)) + ((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖))))
297289, 291, 2963eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) / (1 / 𝑡)) + -(((1 − (1 / 𝑡)) · (𝑥𝑖)) / (1 / 𝑡))) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖))))
298274, 277, 2973eqtr2d 2782 . . . . . . . . . . . . . . . 16 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖))))
299298eqeq2d 2747 . . . . . . . . . . . . . . 15 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) ↔ (𝑝𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖)))))
300273, 299bitrid 282 . . . . . . . . . . . . . 14 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((((𝑦𝑖) − ((1 − (1 / 𝑡)) · (𝑥𝑖))) / (1 / 𝑡)) = (𝑝𝑖) ↔ (𝑝𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖)))))
301268, 272, 3003bitrd 304 . . . . . . . . . . . . 13 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))) ↔ (𝑝𝑖) = (((((1 / 𝑡) − 1) / (1 / 𝑡)) · (𝑥𝑖)) + ((1 / (1 / 𝑡)) · (𝑦𝑖)))))
302253, 301sylibrd 258 . . . . . . . . . . . 12 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖)))))
303302ralimdva 3164 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖)))))
304303imp 407 . . . . . . . . . 10 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → ∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − (1 / 𝑡)) · (𝑥𝑖)) + ((1 / 𝑡) · (𝑝𝑖))))
305220, 227, 304rspcedvd 3583 . . . . . . . . 9 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))
3063053mix3d 1338 . . . . . . . 8 ((((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ 1 < 𝑡) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))
307306exp31 420 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (1 < 𝑡 → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))))
308307com23 86 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (1 < 𝑡 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))))
309308imp 407 . . . . 5 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → (1 < 𝑡 → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
310186, 198, 3093jaod 1428 . . . 4 (((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) ∧ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖)))) → ((𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
311310ex 413 . . 3 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → ((𝑡 < 0 ∨ 𝑡 ∈ (0[,]1) ∨ 1 < 𝑡) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖)))))))
3125, 311mpid 44 . 2 ((((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) ∧ 𝑡 ∈ ℝ) → (∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
313312rexlimdva 3152 1 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (ℝ ↑m (1...𝑁)) ∧ 𝑦 ∈ ((ℝ ↑m (1...𝑁)) ∖ {𝑥})) ∧ 𝑝 ∈ (ℝ ↑m (1...𝑁))) → (∃𝑡 ∈ ℝ ∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑦𝑖))) → (∃𝑘 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝑝𝑖) = (((1 − 𝑘) · (𝑥𝑖)) + (𝑘 · (𝑦𝑖))) ∨ ∃𝑙 ∈ (0[,)1)∀𝑖 ∈ (1...𝑁)(𝑥𝑖) = (((1 − 𝑙) · (𝑝𝑖)) + (𝑙 · (𝑦𝑖))) ∨ ∃𝑚 ∈ (0(,]1)∀𝑖 ∈ (1...𝑁)(𝑦𝑖) = (((1 − 𝑚) · (𝑥𝑖)) + (𝑚 · (𝑝𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1086  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  cdif 3907  {csn 4586   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  *cxr 11188   < clt 11189  cle 11190  cmin 11385  -cneg 11386   / cdiv 11812  cn 12153  +crp 12915  (,]cioc 13265  [,)cico 13266  [,]cicc 13267  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-rp 12916  df-ioc 13269  df-ico 13270  df-icc 13271
This theorem is referenced by:  eenglngeehlnm  46815
  Copyright terms: Public domain W3C validator