Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Visualization version   GIF version

Theorem ostth 26212
 Description: Ostrowski's theorem, which classifies all absolute values on ℚ. Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
Assertion
Ref Expression
ostth (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦   𝑔,𝑎,𝐽,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎   𝑔,𝑞,𝐹,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑔)   𝑄(𝑔,𝑞,𝑎)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑔,𝑞,𝑎)

Proof of Theorem ostth
Dummy variables 𝑘 𝑛 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
2 qabsabv.a . . . . . 6 𝐴 = (AbsVal‘𝑄)
3 padic.j . . . . . 6 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4 ostth.k . . . . . 6 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
5 simpl 486 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝐹𝐴)
6 1re 10626 . . . . . . . . . . 11 1 ∈ ℝ
76ltnri 10734 . . . . . . . . . 10 ¬ 1 < 1
8 ax-1ne0 10591 . . . . . . . . . . . 12 1 ≠ 0
91qrng1 26195 . . . . . . . . . . . . 13 1 = (1r𝑄)
101qrng0 26194 . . . . . . . . . . . . 13 0 = (0g𝑄)
112, 9, 10abv1z 19589 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
128, 11mpan2 690 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘1) = 1)
1312breq2d 5059 . . . . . . . . . 10 (𝐹𝐴 → (1 < (𝐹‘1) ↔ 1 < 1))
147, 13mtbiri 330 . . . . . . . . 9 (𝐹𝐴 → ¬ 1 < (𝐹‘1))
1514adantr 484 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 1 < (𝐹‘1))
16 simprr 772 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 1 < (𝐹𝑛))
17 fveq2 6651 . . . . . . . . . 10 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1817breq2d 5059 . . . . . . . . 9 (𝑛 = 1 → (1 < (𝐹𝑛) ↔ 1 < (𝐹‘1)))
1916, 18syl5ibcom 248 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 → 1 < (𝐹‘1)))
2015, 19mtod 201 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 𝑛 = 1)
21 simprl 770 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ ℕ)
22 elnn1uz2 12311 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2321, 22sylib 221 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2423ord 861 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (¬ 𝑛 = 1 → 𝑛 ∈ (ℤ‘2)))
2520, 24mpd 15 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ (ℤ‘2))
26 eqid 2824 . . . . . 6 ((log‘(𝐹𝑛)) / (log‘𝑛)) = ((log‘(𝐹𝑛)) / (log‘𝑛))
271, 2, 3, 4, 5, 25, 16, 26ostth2 26210 . . . . 5 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
2827rexlimdvaa 3277 . . . 4 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))))
29 3mix2 1328 . . . 4 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
3028, 29syl6 35 . . 3 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
31 ralnex 3230 . . . 4 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛))
32 simpll 766 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝐹𝐴)
33 simplr 768 . . . . . . . . . . 11 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
34 fveq2 6651 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3534breq2d 5059 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑘)))
3635notbid 321 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑘)))
3736cbvralvw 3434 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
3833, 37sylib 221 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
39 simprl 770 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
40 simprr 772 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
41 eqid 2824 . . . . . . . . . 10 -((log‘(𝐹𝑝)) / (log‘𝑝)) = -((log‘(𝐹𝑝)) / (log‘𝑝))
42 eqid 2824 . . . . . . . . . 10 if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝)) = if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝))
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 26211 . . . . . . . . 9 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
4443expr 460 . . . . . . . 8 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ 𝑝 ∈ ℙ) → ((𝐹𝑝) < 1 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
4544reximdva 3266 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
461, 2, 3padicabvf 26204 . . . . . . . . . . 11 𝐽:ℙ⟶𝐴
47 ffn 6495 . . . . . . . . . . 11 (𝐽:ℙ⟶𝐴𝐽 Fn ℙ)
48 fveq1 6650 . . . . . . . . . . . . . . 15 (𝑔 = (𝐽𝑝) → (𝑔𝑦) = ((𝐽𝑝)‘𝑦))
4948oveq1d 7153 . . . . . . . . . . . . . 14 (𝑔 = (𝐽𝑝) → ((𝑔𝑦)↑𝑐𝑎) = (((𝐽𝑝)‘𝑦)↑𝑐𝑎))
5049mpteq2dv 5143 . . . . . . . . . . . . 13 (𝑔 = (𝐽𝑝) → (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5150eqeq2d 2835 . . . . . . . . . . . 12 (𝑔 = (𝐽𝑝) → (𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5251rexrn 6834 . . . . . . . . . . 11 (𝐽 Fn ℙ → (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5346, 47, 52mp2b 10 . . . . . . . . . 10 (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5453rexbii 3241 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
55 rexcom 3346 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5654, 55bitri 278 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
57 3mix3 1329 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5856, 57sylbir 238 . . . . . . 7 (∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5945, 58syl6 35 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
60 ralnex 3230 . . . . . . 7 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1)
61 simpl 486 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹𝐴)
62 simprl 770 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
6362, 37sylib 221 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
64 simprr 772 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)
65 fveq2 6651 . . . . . . . . . . . . . 14 (𝑝 = 𝑘 → (𝐹𝑝) = (𝐹𝑘))
6665breq1d 5057 . . . . . . . . . . . . 13 (𝑝 = 𝑘 → ((𝐹𝑝) < 1 ↔ (𝐹𝑘) < 1))
6766notbid 321 . . . . . . . . . . . 12 (𝑝 = 𝑘 → (¬ (𝐹𝑝) < 1 ↔ ¬ (𝐹𝑘) < 1))
6867cbvralvw 3434 . . . . . . . . . . 11 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
6964, 68sylib 221 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
701, 2, 3, 4, 61, 63, 69ostth1 26206 . . . . . . . . 9 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹 = 𝐾)
71703mix1d 1333 . . . . . . . 8 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7271expr 460 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7360, 72syl5bir 246 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7459, 73pm2.61d 182 . . . . 5 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7574ex 416 . . . 4 (𝐹𝐴 → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7631, 75syl5bir 246 . . 3 (𝐹𝐴 → (¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7730, 76pm2.61d 182 . 2 (𝐹𝐴 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
78 id 22 . . . 4 (𝐹 = 𝐾𝐹 = 𝐾)
791qdrng 26193 . . . . 5 𝑄 ∈ DivRing
801qrngbas 26192 . . . . . 6 ℚ = (Base‘𝑄)
812, 80, 10, 4abvtriv 19598 . . . . 5 (𝑄 ∈ DivRing → 𝐾𝐴)
8279, 81ax-mp 5 . . . 4 𝐾𝐴
8378, 82eqeltrdi 2924 . . 3 (𝐹 = 𝐾𝐹𝐴)
841, 2qabsabv 26202 . . . . . 6 (abs ↾ ℚ) ∈ 𝐴
85 fvres 6670 . . . . . . . . . 10 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
8685oveq1d 7153 . . . . . . . . 9 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑎))
8786mpteq2ia 5138 . . . . . . . 8 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))
8887eqcomi 2833 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎))
892, 80, 88abvcxp 26188 . . . . . 6 (((abs ↾ ℚ) ∈ 𝐴𝑎 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9084, 89mpan 689 . . . . 5 (𝑎 ∈ (0(,]1) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
91 eleq1 2903 . . . . 5 (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9290, 91syl5ibrcom 250 . . . 4 (𝑎 ∈ (0(,]1) → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9392rexlimiv 3272 . . 3 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
941, 2, 3padicabvcxp 26205 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9594ancoms 462 . . . . . 6 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
96 eleq1 2903 . . . . . 6 (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9795, 96syl5ibrcom 250 . . . . 5 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9897rexlimivv 3284 . . . 4 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
9954, 98sylbi 220 . . 3 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → 𝐹𝐴)
10083, 93, 993jaoi 1424 . 2 ((𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))) → 𝐹𝐴)
10177, 100impbii 212 1 (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∨ w3o 1083   = wceq 1538   ∈ wcel 2115   ≠ wne 3013  ∀wral 3132  ∃wrex 3133  ifcif 4448   class class class wbr 5047   ↦ cmpt 5127  ran crn 5537   ↾ cres 5538   Fn wfn 6331  ⟶wf 6332  ‘cfv 6336  (class class class)co 7138  0cc0 10522  1c1 10523   < clt 10660   ≤ cle 10661  -cneg 10856   / cdiv 11282  ℕcn 11623  2c2 11678  ℤ≥cuz 12229  ℚcq 12334  ℝ+crp 12375  (,]cioc 12725  ↑cexp 13423  abscabs 14582  ℙcprime 16002   pCnt cpc 16160   ↾s cress 16473  DivRingcdr 19488  AbsValcabv 19573  ℂfldccnfld 20531  logclog 25135  ↑𝑐ccxp 25136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600  ax-addf 10601  ax-mulf 10602 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-iin 4903  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ioc 12729  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-shft 14415  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-limsup 14817  df-clim 14834  df-rlim 14835  df-sum 15032  df-ef 15410  df-sin 15412  df-cos 15413  df-pi 15415  df-dvds 15597  df-gcd 15831  df-prm 16003  df-pc 16161  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-mulr 16568  df-starv 16569  df-sca 16570  df-vsca 16571  df-ip 16572  df-tset 16573  df-ple 16574  df-ds 16576  df-unif 16577  df-hom 16578  df-cco 16579  df-rest 16685  df-topn 16686  df-0g 16704  df-gsum 16705  df-topgen 16706  df-pt 16707  df-prds 16710  df-xrs 16764  df-qtop 16769  df-imas 16770  df-xps 16772  df-mre 16846  df-mrc 16847  df-acs 16849  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-submnd 17946  df-grp 18095  df-minusg 18096  df-mulg 18214  df-subg 18265  df-cntz 18436  df-cmn 18897  df-mgp 19229  df-ur 19241  df-ring 19288  df-cring 19289  df-oppr 19362  df-dvdsr 19380  df-unit 19381  df-invr 19411  df-dvr 19422  df-drng 19490  df-subrg 19519  df-abv 19574  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-fbas 20528  df-fg 20529  df-cnfld 20532  df-top 21488  df-topon 21505  df-topsp 21527  df-bases 21540  df-cld 21613  df-ntr 21614  df-cls 21615  df-nei 21692  df-lp 21730  df-perf 21731  df-cn 21821  df-cnp 21822  df-haus 21909  df-tx 22156  df-hmeo 22349  df-fil 22440  df-fm 22532  df-flim 22533  df-flf 22534  df-xms 22916  df-ms 22917  df-tms 22918  df-cncf 23472  df-limc 24458  df-dv 24459  df-log 25137  df-cxp 25138 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator