MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Visualization version   GIF version

Theorem ostth 26987
Description: Ostrowski's theorem, which classifies all absolute values on . Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
Assertion
Ref Expression
ostth (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦   𝑔,𝑎,𝐽,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎   𝑔,𝑞,𝐹,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑔)   𝑄(𝑔,𝑞,𝑎)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑔,𝑞,𝑎)

Proof of Theorem ostth
Dummy variables 𝑘 𝑛 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
2 qabsabv.a . . . . . 6 𝐴 = (AbsVal‘𝑄)
3 padic.j . . . . . 6 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4 ostth.k . . . . . 6 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
5 simpl 483 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝐹𝐴)
6 1re 11155 . . . . . . . . . . 11 1 ∈ ℝ
76ltnri 11264 . . . . . . . . . 10 ¬ 1 < 1
8 ax-1ne0 11120 . . . . . . . . . . . 12 1 ≠ 0
91qrng1 26970 . . . . . . . . . . . . 13 1 = (1r𝑄)
101qrng0 26969 . . . . . . . . . . . . 13 0 = (0g𝑄)
112, 9, 10abv1z 20291 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
128, 11mpan2 689 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘1) = 1)
1312breq2d 5117 . . . . . . . . . 10 (𝐹𝐴 → (1 < (𝐹‘1) ↔ 1 < 1))
147, 13mtbiri 326 . . . . . . . . 9 (𝐹𝐴 → ¬ 1 < (𝐹‘1))
1514adantr 481 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 1 < (𝐹‘1))
16 simprr 771 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 1 < (𝐹𝑛))
17 fveq2 6842 . . . . . . . . . 10 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1817breq2d 5117 . . . . . . . . 9 (𝑛 = 1 → (1 < (𝐹𝑛) ↔ 1 < (𝐹‘1)))
1916, 18syl5ibcom 244 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 → 1 < (𝐹‘1)))
2015, 19mtod 197 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 𝑛 = 1)
21 simprl 769 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ ℕ)
22 elnn1uz2 12850 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2321, 22sylib 217 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2423ord 862 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (¬ 𝑛 = 1 → 𝑛 ∈ (ℤ‘2)))
2520, 24mpd 15 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ (ℤ‘2))
26 eqid 2736 . . . . . 6 ((log‘(𝐹𝑛)) / (log‘𝑛)) = ((log‘(𝐹𝑛)) / (log‘𝑛))
271, 2, 3, 4, 5, 25, 16, 26ostth2 26985 . . . . 5 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
2827rexlimdvaa 3153 . . . 4 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))))
29 3mix2 1331 . . . 4 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
3028, 29syl6 35 . . 3 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
31 ralnex 3075 . . . 4 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛))
32 simpll 765 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝐹𝐴)
33 simplr 767 . . . . . . . . . . 11 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
34 fveq2 6842 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3534breq2d 5117 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑘)))
3635notbid 317 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑘)))
3736cbvralvw 3225 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
3833, 37sylib 217 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
39 simprl 769 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
40 simprr 771 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
41 eqid 2736 . . . . . . . . . 10 -((log‘(𝐹𝑝)) / (log‘𝑝)) = -((log‘(𝐹𝑝)) / (log‘𝑝))
42 eqid 2736 . . . . . . . . . 10 if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝)) = if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝))
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 26986 . . . . . . . . 9 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
4443expr 457 . . . . . . . 8 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ 𝑝 ∈ ℙ) → ((𝐹𝑝) < 1 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
4544reximdva 3165 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
461, 2, 3padicabvf 26979 . . . . . . . . . . 11 𝐽:ℙ⟶𝐴
47 ffn 6668 . . . . . . . . . . 11 (𝐽:ℙ⟶𝐴𝐽 Fn ℙ)
48 fveq1 6841 . . . . . . . . . . . . . . 15 (𝑔 = (𝐽𝑝) → (𝑔𝑦) = ((𝐽𝑝)‘𝑦))
4948oveq1d 7372 . . . . . . . . . . . . . 14 (𝑔 = (𝐽𝑝) → ((𝑔𝑦)↑𝑐𝑎) = (((𝐽𝑝)‘𝑦)↑𝑐𝑎))
5049mpteq2dv 5207 . . . . . . . . . . . . 13 (𝑔 = (𝐽𝑝) → (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5150eqeq2d 2747 . . . . . . . . . . . 12 (𝑔 = (𝐽𝑝) → (𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5251rexrn 7037 . . . . . . . . . . 11 (𝐽 Fn ℙ → (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5346, 47, 52mp2b 10 . . . . . . . . . 10 (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5453rexbii 3097 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
55 rexcom 3273 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5654, 55bitri 274 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
57 3mix3 1332 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5856, 57sylbir 234 . . . . . . 7 (∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5945, 58syl6 35 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
60 ralnex 3075 . . . . . . 7 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1)
61 simpl 483 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹𝐴)
62 simprl 769 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
6362, 37sylib 217 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
64 simprr 771 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)
65 fveq2 6842 . . . . . . . . . . . . . 14 (𝑝 = 𝑘 → (𝐹𝑝) = (𝐹𝑘))
6665breq1d 5115 . . . . . . . . . . . . 13 (𝑝 = 𝑘 → ((𝐹𝑝) < 1 ↔ (𝐹𝑘) < 1))
6766notbid 317 . . . . . . . . . . . 12 (𝑝 = 𝑘 → (¬ (𝐹𝑝) < 1 ↔ ¬ (𝐹𝑘) < 1))
6867cbvralvw 3225 . . . . . . . . . . 11 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
6964, 68sylib 217 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
701, 2, 3, 4, 61, 63, 69ostth1 26981 . . . . . . . . 9 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹 = 𝐾)
71703mix1d 1336 . . . . . . . 8 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7271expr 457 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7360, 72biimtrrid 242 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7459, 73pm2.61d 179 . . . . 5 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7574ex 413 . . . 4 (𝐹𝐴 → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7631, 75biimtrrid 242 . . 3 (𝐹𝐴 → (¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7730, 76pm2.61d 179 . 2 (𝐹𝐴 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
78 id 22 . . . 4 (𝐹 = 𝐾𝐹 = 𝐾)
791qdrng 26968 . . . . 5 𝑄 ∈ DivRing
801qrngbas 26967 . . . . . 6 ℚ = (Base‘𝑄)
812, 80, 10, 4abvtriv 20300 . . . . 5 (𝑄 ∈ DivRing → 𝐾𝐴)
8279, 81ax-mp 5 . . . 4 𝐾𝐴
8378, 82eqeltrdi 2846 . . 3 (𝐹 = 𝐾𝐹𝐴)
841, 2qabsabv 26977 . . . . . 6 (abs ↾ ℚ) ∈ 𝐴
85 fvres 6861 . . . . . . . . . 10 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
8685oveq1d 7372 . . . . . . . . 9 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑎))
8786mpteq2ia 5208 . . . . . . . 8 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))
8887eqcomi 2745 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎))
892, 80, 88abvcxp 26963 . . . . . 6 (((abs ↾ ℚ) ∈ 𝐴𝑎 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9084, 89mpan 688 . . . . 5 (𝑎 ∈ (0(,]1) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
91 eleq1 2825 . . . . 5 (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9290, 91syl5ibrcom 246 . . . 4 (𝑎 ∈ (0(,]1) → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9392rexlimiv 3145 . . 3 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
941, 2, 3padicabvcxp 26980 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9594ancoms 459 . . . . . 6 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
96 eleq1 2825 . . . . . 6 (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9795, 96syl5ibrcom 246 . . . . 5 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9897rexlimivv 3196 . . . 4 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
9954, 98sylbi 216 . . 3 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → 𝐹𝐴)
10083, 93, 993jaoi 1427 . 2 ((𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))) → 𝐹𝐴)
10177, 100impbii 208 1 (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ifcif 4486   class class class wbr 5105  cmpt 5188  ran crn 5634  cres 5635   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  0cc0 11051  1c1 11052   < clt 11189  cle 11190  -cneg 11386   / cdiv 11812  cn 12153  2c2 12208  cuz 12763  cq 12873  +crp 12915  (,]cioc 13265  cexp 13967  abscabs 15119  cprime 16547   pCnt cpc 16708  s cress 17112  DivRingcdr 20185  AbsValcabv 20275  fldccnfld 20796  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-prm 16548  df-pc 16709  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-subrg 20220  df-abv 20276  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator