MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Visualization version   GIF version

Theorem ostth 27557
Description: Ostrowski's theorem, which classifies all absolute values on . Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
Assertion
Ref Expression
ostth (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦   𝑔,𝑎,𝐽,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎   𝑔,𝑞,𝐹,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑔)   𝑄(𝑔,𝑞,𝑎)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑔,𝑞,𝑎)

Proof of Theorem ostth
Dummy variables 𝑘 𝑛 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
2 qabsabv.a . . . . . 6 𝐴 = (AbsVal‘𝑄)
3 padic.j . . . . . 6 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4 ostth.k . . . . . 6 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
5 simpl 482 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝐹𝐴)
6 1re 11181 . . . . . . . . . . 11 1 ∈ ℝ
76ltnri 11290 . . . . . . . . . 10 ¬ 1 < 1
8 ax-1ne0 11144 . . . . . . . . . . . 12 1 ≠ 0
91qrng1 27540 . . . . . . . . . . . . 13 1 = (1r𝑄)
101qrng0 27539 . . . . . . . . . . . . 13 0 = (0g𝑄)
112, 9, 10abv1z 20740 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
128, 11mpan2 691 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘1) = 1)
1312breq2d 5122 . . . . . . . . . 10 (𝐹𝐴 → (1 < (𝐹‘1) ↔ 1 < 1))
147, 13mtbiri 327 . . . . . . . . 9 (𝐹𝐴 → ¬ 1 < (𝐹‘1))
1514adantr 480 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 1 < (𝐹‘1))
16 simprr 772 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 1 < (𝐹𝑛))
17 fveq2 6861 . . . . . . . . . 10 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1817breq2d 5122 . . . . . . . . 9 (𝑛 = 1 → (1 < (𝐹𝑛) ↔ 1 < (𝐹‘1)))
1916, 18syl5ibcom 245 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 → 1 < (𝐹‘1)))
2015, 19mtod 198 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 𝑛 = 1)
21 simprl 770 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ ℕ)
22 elnn1uz2 12891 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2321, 22sylib 218 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2423ord 864 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (¬ 𝑛 = 1 → 𝑛 ∈ (ℤ‘2)))
2520, 24mpd 15 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ (ℤ‘2))
26 eqid 2730 . . . . . 6 ((log‘(𝐹𝑛)) / (log‘𝑛)) = ((log‘(𝐹𝑛)) / (log‘𝑛))
271, 2, 3, 4, 5, 25, 16, 26ostth2 27555 . . . . 5 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
2827rexlimdvaa 3136 . . . 4 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))))
29 3mix2 1332 . . . 4 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
3028, 29syl6 35 . . 3 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
31 ralnex 3056 . . . 4 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛))
32 simpll 766 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝐹𝐴)
33 simplr 768 . . . . . . . . . . 11 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
34 fveq2 6861 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3534breq2d 5122 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑘)))
3635notbid 318 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑘)))
3736cbvralvw 3216 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
3833, 37sylib 218 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
39 simprl 770 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
40 simprr 772 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
41 eqid 2730 . . . . . . . . . 10 -((log‘(𝐹𝑝)) / (log‘𝑝)) = -((log‘(𝐹𝑝)) / (log‘𝑝))
42 eqid 2730 . . . . . . . . . 10 if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝)) = if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝))
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 27556 . . . . . . . . 9 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
4443expr 456 . . . . . . . 8 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ 𝑝 ∈ ℙ) → ((𝐹𝑝) < 1 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
4544reximdva 3147 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
461, 2, 3padicabvf 27549 . . . . . . . . . . 11 𝐽:ℙ⟶𝐴
47 ffn 6691 . . . . . . . . . . 11 (𝐽:ℙ⟶𝐴𝐽 Fn ℙ)
48 fveq1 6860 . . . . . . . . . . . . . . 15 (𝑔 = (𝐽𝑝) → (𝑔𝑦) = ((𝐽𝑝)‘𝑦))
4948oveq1d 7405 . . . . . . . . . . . . . 14 (𝑔 = (𝐽𝑝) → ((𝑔𝑦)↑𝑐𝑎) = (((𝐽𝑝)‘𝑦)↑𝑐𝑎))
5049mpteq2dv 5204 . . . . . . . . . . . . 13 (𝑔 = (𝐽𝑝) → (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5150eqeq2d 2741 . . . . . . . . . . . 12 (𝑔 = (𝐽𝑝) → (𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5251rexrn 7062 . . . . . . . . . . 11 (𝐽 Fn ℙ → (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5346, 47, 52mp2b 10 . . . . . . . . . 10 (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5453rexbii 3077 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
55 rexcom 3267 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5654, 55bitri 275 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
57 3mix3 1333 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5856, 57sylbir 235 . . . . . . 7 (∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5945, 58syl6 35 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
60 ralnex 3056 . . . . . . 7 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1)
61 simpl 482 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹𝐴)
62 simprl 770 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
6362, 37sylib 218 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
64 simprr 772 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)
65 fveq2 6861 . . . . . . . . . . . . . 14 (𝑝 = 𝑘 → (𝐹𝑝) = (𝐹𝑘))
6665breq1d 5120 . . . . . . . . . . . . 13 (𝑝 = 𝑘 → ((𝐹𝑝) < 1 ↔ (𝐹𝑘) < 1))
6766notbid 318 . . . . . . . . . . . 12 (𝑝 = 𝑘 → (¬ (𝐹𝑝) < 1 ↔ ¬ (𝐹𝑘) < 1))
6867cbvralvw 3216 . . . . . . . . . . 11 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
6964, 68sylib 218 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
701, 2, 3, 4, 61, 63, 69ostth1 27551 . . . . . . . . 9 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹 = 𝐾)
71703mix1d 1337 . . . . . . . 8 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7271expr 456 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7360, 72biimtrrid 243 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7459, 73pm2.61d 179 . . . . 5 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7574ex 412 . . . 4 (𝐹𝐴 → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7631, 75biimtrrid 243 . . 3 (𝐹𝐴 → (¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7730, 76pm2.61d 179 . 2 (𝐹𝐴 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
78 id 22 . . . 4 (𝐹 = 𝐾𝐹 = 𝐾)
791qdrng 27538 . . . . 5 𝑄 ∈ DivRing
801qrngbas 27537 . . . . . 6 ℚ = (Base‘𝑄)
812, 80, 10, 4abvtriv 20750 . . . . 5 (𝑄 ∈ DivRing → 𝐾𝐴)
8279, 81ax-mp 5 . . . 4 𝐾𝐴
8378, 82eqeltrdi 2837 . . 3 (𝐹 = 𝐾𝐹𝐴)
841, 2qabsabv 27547 . . . . . 6 (abs ↾ ℚ) ∈ 𝐴
85 fvres 6880 . . . . . . . . . 10 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
8685oveq1d 7405 . . . . . . . . 9 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑎))
8786mpteq2ia 5205 . . . . . . . 8 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))
8887eqcomi 2739 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎))
892, 80, 88abvcxp 27533 . . . . . 6 (((abs ↾ ℚ) ∈ 𝐴𝑎 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9084, 89mpan 690 . . . . 5 (𝑎 ∈ (0(,]1) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
91 eleq1 2817 . . . . 5 (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9290, 91syl5ibrcom 247 . . . 4 (𝑎 ∈ (0(,]1) → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9392rexlimiv 3128 . . 3 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
941, 2, 3padicabvcxp 27550 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9594ancoms 458 . . . . . 6 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
96 eleq1 2817 . . . . . 6 (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9795, 96syl5ibrcom 247 . . . . 5 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9897rexlimivv 3180 . . . 4 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
9954, 98sylbi 217 . . 3 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → 𝐹𝐴)
10083, 93, 993jaoi 1430 . 2 ((𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))) → 𝐹𝐴)
10177, 100impbii 209 1 (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  ifcif 4491   class class class wbr 5110  cmpt 5191  ran crn 5642  cres 5643   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   < clt 11215  cle 11216  -cneg 11413   / cdiv 11842  cn 12193  2c2 12248  cuz 12800  cq 12914  +crp 12958  (,]cioc 13314  cexp 14033  abscabs 15207  cprime 16648   pCnt cpc 16814  s cress 17207  DivRingcdr 20645  AbsValcabv 20724  fldccnfld 21271  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-prm 16649  df-pc 16815  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-drng 20647  df-abv 20725  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator