| Step | Hyp | Ref
| Expression |
| 1 | | qrng.q |
. . . . . 6
⊢ 𝑄 = (ℂfld
↾s ℚ) |
| 2 | | qabsabv.a |
. . . . . 6
⊢ 𝐴 = (AbsVal‘𝑄) |
| 3 | | padic.j |
. . . . . 6
⊢ 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥))))) |
| 4 | | ostth.k |
. . . . . 6
⊢ 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1)) |
| 5 | | simpl 482 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → 𝐹 ∈ 𝐴) |
| 6 | | 1re 11261 |
. . . . . . . . . . 11
⊢ 1 ∈
ℝ |
| 7 | 6 | ltnri 11370 |
. . . . . . . . . 10
⊢ ¬ 1
< 1 |
| 8 | | ax-1ne0 11224 |
. . . . . . . . . . . 12
⊢ 1 ≠
0 |
| 9 | 1 | qrng1 27666 |
. . . . . . . . . . . . 13
⊢ 1 =
(1r‘𝑄) |
| 10 | 1 | qrng0 27665 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑄) |
| 11 | 2, 9, 10 | abv1z 20825 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ 𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1) |
| 12 | 8, 11 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ 𝐴 → (𝐹‘1) = 1) |
| 13 | 12 | breq2d 5155 |
. . . . . . . . . 10
⊢ (𝐹 ∈ 𝐴 → (1 < (𝐹‘1) ↔ 1 < 1)) |
| 14 | 7, 13 | mtbiri 327 |
. . . . . . . . 9
⊢ (𝐹 ∈ 𝐴 → ¬ 1 < (𝐹‘1)) |
| 15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → ¬ 1 < (𝐹‘1)) |
| 16 | | simprr 773 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → 1 < (𝐹‘𝑛)) |
| 17 | | fveq2 6906 |
. . . . . . . . . 10
⊢ (𝑛 = 1 → (𝐹‘𝑛) = (𝐹‘1)) |
| 18 | 17 | breq2d 5155 |
. . . . . . . . 9
⊢ (𝑛 = 1 → (1 < (𝐹‘𝑛) ↔ 1 < (𝐹‘1))) |
| 19 | 16, 18 | syl5ibcom 245 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → (𝑛 = 1 → 1 < (𝐹‘1))) |
| 20 | 15, 19 | mtod 198 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → ¬ 𝑛 = 1) |
| 21 | | simprl 771 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → 𝑛 ∈ ℕ) |
| 22 | | elnn1uz2 12967 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈
(ℤ≥‘2))) |
| 23 | 21, 22 | sylib 218 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → (𝑛 = 1 ∨ 𝑛 ∈
(ℤ≥‘2))) |
| 24 | 23 | ord 865 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → (¬ 𝑛 = 1 → 𝑛 ∈
(ℤ≥‘2))) |
| 25 | 20, 24 | mpd 15 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → 𝑛 ∈
(ℤ≥‘2)) |
| 26 | | eqid 2737 |
. . . . . 6
⊢
((log‘(𝐹‘𝑛)) / (log‘𝑛)) = ((log‘(𝐹‘𝑛)) / (log‘𝑛)) |
| 27 | 1, 2, 3, 4, 5, 25,
16, 26 | ostth2 27681 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹‘𝑛))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))) |
| 28 | 27 | rexlimdvaa 3156 |
. . . 4
⊢ (𝐹 ∈ 𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹‘𝑛) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))) |
| 29 | | 3mix2 1332 |
. . . 4
⊢
(∃𝑎 ∈
(0(,]1)𝐹 = (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 30 | 28, 29 | syl6 35 |
. . 3
⊢ (𝐹 ∈ 𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹‘𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 31 | | ralnex 3072 |
. . . 4
⊢
(∀𝑛 ∈
ℕ ¬ 1 < (𝐹‘𝑛) ↔ ¬ ∃𝑛 ∈ ℕ 1 < (𝐹‘𝑛)) |
| 32 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → 𝐹 ∈ 𝐴) |
| 33 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| 34 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
| 35 | 34 | breq2d 5155 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (1 < (𝐹‘𝑛) ↔ 1 < (𝐹‘𝑘))) |
| 36 | 35 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (¬ 1 < (𝐹‘𝑛) ↔ ¬ 1 < (𝐹‘𝑘))) |
| 37 | 36 | cbvralvw 3237 |
. . . . . . . . . . 11
⊢
(∀𝑛 ∈
ℕ ¬ 1 < (𝐹‘𝑛) ↔ ∀𝑘 ∈ ℕ ¬ 1 < (𝐹‘𝑘)) |
| 38 | 33, 37 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹‘𝑘)) |
| 39 | | simprl 771 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → 𝑝 ∈ ℙ) |
| 40 | | simprr 773 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → (𝐹‘𝑝) < 1) |
| 41 | | eqid 2737 |
. . . . . . . . . 10
⊢
-((log‘(𝐹‘𝑝)) / (log‘𝑝)) = -((log‘(𝐹‘𝑝)) / (log‘𝑝)) |
| 42 | | eqid 2737 |
. . . . . . . . . 10
⊢ if((𝐹‘𝑝) ≤ (𝐹‘𝑧), (𝐹‘𝑧), (𝐹‘𝑝)) = if((𝐹‘𝑝) ≤ (𝐹‘𝑧), (𝐹‘𝑧), (𝐹‘𝑝)) |
| 43 | 1, 2, 3, 4, 32, 38, 39, 40, 41, 42 | ostth3 27682 |
. . . . . . . . 9
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹‘𝑝) < 1)) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 44 | 43 | expr 456 |
. . . . . . . 8
⊢ (((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) ∧ 𝑝 ∈ ℙ) → ((𝐹‘𝑝) < 1 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)))) |
| 45 | 44 | reximdva 3168 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) → (∃𝑝 ∈ ℙ (𝐹‘𝑝) < 1 → ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)))) |
| 46 | 1, 2, 3 | padicabvf 27675 |
. . . . . . . . . . 11
⊢ 𝐽:ℙ⟶𝐴 |
| 47 | | ffn 6736 |
. . . . . . . . . . 11
⊢ (𝐽:ℙ⟶𝐴 → 𝐽 Fn ℙ) |
| 48 | | fveq1 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = (𝐽‘𝑝) → (𝑔‘𝑦) = ((𝐽‘𝑝)‘𝑦)) |
| 49 | 48 | oveq1d 7446 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = (𝐽‘𝑝) → ((𝑔‘𝑦)↑𝑐𝑎) = (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) |
| 50 | 49 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝑔 = (𝐽‘𝑝) → (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 51 | 50 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ (𝑔 = (𝐽‘𝑝) → (𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)))) |
| 52 | 51 | rexrn 7107 |
. . . . . . . . . . 11
⊢ (𝐽 Fn ℙ → (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)))) |
| 53 | 46, 47, 52 | mp2b 10 |
. . . . . . . . . 10
⊢
(∃𝑔 ∈ ran
𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 54 | 53 | rexbii 3094 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) ↔ ∃𝑎 ∈ ℝ+ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 55 | | rexcom 3290 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
ℝ+ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 56 | 54, 55 | bitri 275 |
. . . . . . . 8
⊢
(∃𝑎 ∈
ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎))) |
| 57 | | 3mix3 1333 |
. . . . . . . 8
⊢
(∃𝑎 ∈
ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 58 | 56, 57 | sylbir 235 |
. . . . . . 7
⊢
(∃𝑝 ∈
ℙ ∃𝑎 ∈
ℝ+ 𝐹 =
(𝑦 ∈ ℚ ↦
(((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 59 | 45, 58 | syl6 35 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) → (∃𝑝 ∈ ℙ (𝐹‘𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 60 | | ralnex 3072 |
. . . . . . 7
⊢
(∀𝑝 ∈
ℙ ¬ (𝐹‘𝑝) < 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝐹‘𝑝) < 1) |
| 61 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → 𝐹 ∈ 𝐴) |
| 62 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) |
| 63 | 62, 37 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹‘𝑘)) |
| 64 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1) |
| 65 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑘 → (𝐹‘𝑝) = (𝐹‘𝑘)) |
| 66 | 65 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 𝑘 → ((𝐹‘𝑝) < 1 ↔ (𝐹‘𝑘) < 1)) |
| 67 | 66 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑘 → (¬ (𝐹‘𝑝) < 1 ↔ ¬ (𝐹‘𝑘) < 1)) |
| 68 | 67 | cbvralvw 3237 |
. . . . . . . . . . 11
⊢
(∀𝑝 ∈
ℙ ¬ (𝐹‘𝑝) < 1 ↔ ∀𝑘 ∈ ℙ ¬ (𝐹‘𝑘) < 1) |
| 69 | 64, 68 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → ∀𝑘 ∈ ℙ ¬ (𝐹‘𝑘) < 1) |
| 70 | 1, 2, 3, 4, 61, 63, 69 | ostth1 27677 |
. . . . . . . . 9
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → 𝐹 = 𝐾) |
| 71 | 70 | 3mix1d 1337 |
. . . . . . . 8
⊢ ((𝐹 ∈ 𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 72 | 71 | expr 456 |
. . . . . . 7
⊢ ((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) → (∀𝑝 ∈ ℙ ¬ (𝐹‘𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 73 | 60, 72 | biimtrrid 243 |
. . . . . 6
⊢ ((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) → (¬ ∃𝑝 ∈ ℙ (𝐹‘𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 74 | 59, 73 | pm2.61d 179 |
. . . . 5
⊢ ((𝐹 ∈ 𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 75 | 74 | ex 412 |
. . . 4
⊢ (𝐹 ∈ 𝐴 → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹‘𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 76 | 31, 75 | biimtrrid 243 |
. . 3
⊢ (𝐹 ∈ 𝐴 → (¬ ∃𝑛 ∈ ℕ 1 < (𝐹‘𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))))) |
| 77 | 30, 76 | pm2.61d 179 |
. 2
⊢ (𝐹 ∈ 𝐴 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |
| 78 | | id 22 |
. . . 4
⊢ (𝐹 = 𝐾 → 𝐹 = 𝐾) |
| 79 | 1 | qdrng 27664 |
. . . . 5
⊢ 𝑄 ∈ DivRing |
| 80 | 1 | qrngbas 27663 |
. . . . . 6
⊢ ℚ =
(Base‘𝑄) |
| 81 | 2, 80, 10, 4 | abvtriv 20835 |
. . . . 5
⊢ (𝑄 ∈ DivRing → 𝐾 ∈ 𝐴) |
| 82 | 79, 81 | ax-mp 5 |
. . . 4
⊢ 𝐾 ∈ 𝐴 |
| 83 | 78, 82 | eqeltrdi 2849 |
. . 3
⊢ (𝐹 = 𝐾 → 𝐹 ∈ 𝐴) |
| 84 | 1, 2 | qabsabv 27673 |
. . . . . 6
⊢ (abs
↾ ℚ) ∈ 𝐴 |
| 85 | | fvres 6925 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℚ → ((abs
↾ ℚ)‘𝑦) =
(abs‘𝑦)) |
| 86 | 85 | oveq1d 7446 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℚ → (((abs
↾ ℚ)‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑎)) |
| 87 | 86 | mpteq2ia 5245 |
. . . . . . . 8
⊢ (𝑦 ∈ ℚ ↦ (((abs
↾ ℚ)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) |
| 88 | 87 | eqcomi 2746 |
. . . . . . 7
⊢ (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((abs ↾
ℚ)‘𝑦)↑𝑐𝑎)) |
| 89 | 2, 80, 88 | abvcxp 27659 |
. . . . . 6
⊢ (((abs
↾ ℚ) ∈ 𝐴
∧ 𝑎 ∈ (0(,]1))
→ (𝑦 ∈ ℚ
↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴) |
| 90 | 84, 89 | mpan 690 |
. . . . 5
⊢ (𝑎 ∈ (0(,]1) → (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴) |
| 91 | | eleq1 2829 |
. . . . 5
⊢ (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹 ∈ 𝐴 ↔ (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)) |
| 92 | 90, 91 | syl5ibrcom 247 |
. . . 4
⊢ (𝑎 ∈ (0(,]1) → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹 ∈ 𝐴)) |
| 93 | 92 | rexlimiv 3148 |
. . 3
⊢
(∃𝑎 ∈
(0(,]1)𝐹 = (𝑦 ∈ ℚ ↦
((abs‘𝑦)↑𝑐𝑎)) → 𝐹 ∈ 𝐴) |
| 94 | 1, 2, 3 | padicabvcxp 27676 |
. . . . . . 7
⊢ ((𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+)
→ (𝑦 ∈ ℚ
↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴) |
| 95 | 94 | ancoms 458 |
. . . . . 6
⊢ ((𝑎 ∈ ℝ+
∧ 𝑝 ∈ ℙ)
→ (𝑦 ∈ ℚ
↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴) |
| 96 | | eleq1 2829 |
. . . . . 6
⊢ (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 ∈ 𝐴 ↔ (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)) |
| 97 | 95, 96 | syl5ibrcom 247 |
. . . . 5
⊢ ((𝑎 ∈ ℝ+
∧ 𝑝 ∈ ℙ)
→ (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹 ∈ 𝐴)) |
| 98 | 97 | rexlimivv 3201 |
. . . 4
⊢
(∃𝑎 ∈
ℝ+ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽‘𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹 ∈ 𝐴) |
| 99 | 54, 98 | sylbi 217 |
. . 3
⊢
(∃𝑎 ∈
ℝ+ ∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)) → 𝐹 ∈ 𝐴) |
| 100 | 83, 93, 99 | 3jaoi 1430 |
. 2
⊢ ((𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎))) → 𝐹 ∈ 𝐴) |
| 101 | 77, 100 | impbii 209 |
1
⊢ (𝐹 ∈ 𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+
∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔‘𝑦)↑𝑐𝑎)))) |