MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth Structured version   Visualization version   GIF version

Theorem ostth 27602
Description: Ostrowski's theorem, which classifies all absolute values on . Any such absolute value must either be the trivial absolute value 𝐾, a constant exponent 0 < 𝑎 ≤ 1 times the regular absolute value, or a positive exponent times the p-adic absolute value. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
Assertion
Ref Expression
ostth (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦   𝑔,𝑎,𝐽,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎   𝑔,𝑞,𝐹,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐴(𝑔)   𝑄(𝑔,𝑞,𝑎)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑔,𝑞,𝑎)

Proof of Theorem ostth
Dummy variables 𝑘 𝑛 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qrng.q . . . . . 6 𝑄 = (ℂflds ℚ)
2 qabsabv.a . . . . . 6 𝐴 = (AbsVal‘𝑄)
3 padic.j . . . . . 6 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4 ostth.k . . . . . 6 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
5 simpl 482 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝐹𝐴)
6 1re 11235 . . . . . . . . . . 11 1 ∈ ℝ
76ltnri 11344 . . . . . . . . . 10 ¬ 1 < 1
8 ax-1ne0 11198 . . . . . . . . . . . 12 1 ≠ 0
91qrng1 27585 . . . . . . . . . . . . 13 1 = (1r𝑄)
101qrng0 27584 . . . . . . . . . . . . 13 0 = (0g𝑄)
112, 9, 10abv1z 20784 . . . . . . . . . . . 12 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
128, 11mpan2 691 . . . . . . . . . . 11 (𝐹𝐴 → (𝐹‘1) = 1)
1312breq2d 5131 . . . . . . . . . 10 (𝐹𝐴 → (1 < (𝐹‘1) ↔ 1 < 1))
147, 13mtbiri 327 . . . . . . . . 9 (𝐹𝐴 → ¬ 1 < (𝐹‘1))
1514adantr 480 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 1 < (𝐹‘1))
16 simprr 772 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 1 < (𝐹𝑛))
17 fveq2 6876 . . . . . . . . . 10 (𝑛 = 1 → (𝐹𝑛) = (𝐹‘1))
1817breq2d 5131 . . . . . . . . 9 (𝑛 = 1 → (1 < (𝐹𝑛) ↔ 1 < (𝐹‘1)))
1916, 18syl5ibcom 245 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 → 1 < (𝐹‘1)))
2015, 19mtod 198 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ¬ 𝑛 = 1)
21 simprl 770 . . . . . . . . 9 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ ℕ)
22 elnn1uz2 12941 . . . . . . . . 9 (𝑛 ∈ ℕ ↔ (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2321, 22sylib 218 . . . . . . . 8 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (𝑛 = 1 ∨ 𝑛 ∈ (ℤ‘2)))
2423ord 864 . . . . . . 7 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → (¬ 𝑛 = 1 → 𝑛 ∈ (ℤ‘2)))
2520, 24mpd 15 . . . . . 6 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → 𝑛 ∈ (ℤ‘2))
26 eqid 2735 . . . . . 6 ((log‘(𝐹𝑛)) / (log‘𝑛)) = ((log‘(𝐹𝑛)) / (log‘𝑛))
271, 2, 3, 4, 5, 25, 16, 26ostth2 27600 . . . . 5 ((𝐹𝐴 ∧ (𝑛 ∈ ℕ ∧ 1 < (𝐹𝑛))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
2827rexlimdvaa 3142 . . . 4 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))))
29 3mix2 1332 . . . 4 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
3028, 29syl6 35 . . 3 (𝐹𝐴 → (∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
31 ralnex 3062 . . . 4 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛))
32 simpll 766 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝐹𝐴)
33 simplr 768 . . . . . . . . . . 11 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
34 fveq2 6876 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
3534breq2d 5131 . . . . . . . . . . . . 13 (𝑛 = 𝑘 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑘)))
3635notbid 318 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑘)))
3736cbvralvw 3220 . . . . . . . . . . 11 (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ↔ ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
3833, 37sylib 218 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
39 simprl 770 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
40 simprr 772 . . . . . . . . . 10 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
41 eqid 2735 . . . . . . . . . 10 -((log‘(𝐹𝑝)) / (log‘𝑝)) = -((log‘(𝐹𝑝)) / (log‘𝑝))
42 eqid 2735 . . . . . . . . . 10 if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝)) = if((𝐹𝑝) ≤ (𝐹𝑧), (𝐹𝑧), (𝐹𝑝))
431, 2, 3, 4, 32, 38, 39, 40, 41, 42ostth3 27601 . . . . . . . . 9 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ (𝑝 ∈ ℙ ∧ (𝐹𝑝) < 1)) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
4443expr 456 . . . . . . . 8 (((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) ∧ 𝑝 ∈ ℙ) → ((𝐹𝑝) < 1 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
4544reximdva 3153 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
461, 2, 3padicabvf 27594 . . . . . . . . . . 11 𝐽:ℙ⟶𝐴
47 ffn 6706 . . . . . . . . . . 11 (𝐽:ℙ⟶𝐴𝐽 Fn ℙ)
48 fveq1 6875 . . . . . . . . . . . . . . 15 (𝑔 = (𝐽𝑝) → (𝑔𝑦) = ((𝐽𝑝)‘𝑦))
4948oveq1d 7420 . . . . . . . . . . . . . 14 (𝑔 = (𝐽𝑝) → ((𝑔𝑦)↑𝑐𝑎) = (((𝐽𝑝)‘𝑦)↑𝑐𝑎))
5049mpteq2dv 5215 . . . . . . . . . . . . 13 (𝑔 = (𝐽𝑝) → (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5150eqeq2d 2746 . . . . . . . . . . . 12 (𝑔 = (𝐽𝑝) → (𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5251rexrn 7077 . . . . . . . . . . 11 (𝐽 Fn ℙ → (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎))))
5346, 47, 52mp2b 10 . . . . . . . . . 10 (∃𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5453rexbii 3083 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
55 rexcom 3271 . . . . . . . . 9 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
5654, 55bitri 275 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) ↔ ∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)))
57 3mix3 1333 . . . . . . . 8 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5856, 57sylbir 235 . . . . . . 7 (∃𝑝 ∈ ℙ ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
5945, 58syl6 35 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
60 ralnex 3062 . . . . . . 7 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1)
61 simpl 482 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹𝐴)
62 simprl 770 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
6362, 37sylib 218 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℕ ¬ 1 < (𝐹𝑘))
64 simprr 772 . . . . . . . . . . 11 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)
65 fveq2 6876 . . . . . . . . . . . . . 14 (𝑝 = 𝑘 → (𝐹𝑝) = (𝐹𝑘))
6665breq1d 5129 . . . . . . . . . . . . 13 (𝑝 = 𝑘 → ((𝐹𝑝) < 1 ↔ (𝐹𝑘) < 1))
6766notbid 318 . . . . . . . . . . . 12 (𝑝 = 𝑘 → (¬ (𝐹𝑝) < 1 ↔ ¬ (𝐹𝑘) < 1))
6867cbvralvw 3220 . . . . . . . . . . 11 (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 ↔ ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
6964, 68sylib 218 . . . . . . . . . 10 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → ∀𝑘 ∈ ℙ ¬ (𝐹𝑘) < 1)
701, 2, 3, 4, 61, 63, 69ostth1 27596 . . . . . . . . 9 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → 𝐹 = 𝐾)
71703mix1d 1337 . . . . . . . 8 ((𝐹𝐴 ∧ (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) ∧ ∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7271expr 456 . . . . . . 7 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (∀𝑝 ∈ ℙ ¬ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7360, 72biimtrrid 243 . . . . . 6 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (¬ ∃𝑝 ∈ ℙ (𝐹𝑝) < 1 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7459, 73pm2.61d 179 . . . . 5 ((𝐹𝐴 ∧ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
7574ex 412 . . . 4 (𝐹𝐴 → (∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7631, 75biimtrrid 243 . . 3 (𝐹𝐴 → (¬ ∃𝑛 ∈ ℕ 1 < (𝐹𝑛) → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)))))
7730, 76pm2.61d 179 . 2 (𝐹𝐴 → (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
78 id 22 . . . 4 (𝐹 = 𝐾𝐹 = 𝐾)
791qdrng 27583 . . . . 5 𝑄 ∈ DivRing
801qrngbas 27582 . . . . . 6 ℚ = (Base‘𝑄)
812, 80, 10, 4abvtriv 20794 . . . . 5 (𝑄 ∈ DivRing → 𝐾𝐴)
8279, 81ax-mp 5 . . . 4 𝐾𝐴
8378, 82eqeltrdi 2842 . . 3 (𝐹 = 𝐾𝐹𝐴)
841, 2qabsabv 27592 . . . . . 6 (abs ↾ ℚ) ∈ 𝐴
85 fvres 6895 . . . . . . . . . 10 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
8685oveq1d 7420 . . . . . . . . 9 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑎))
8786mpteq2ia 5216 . . . . . . . 8 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎))
8887eqcomi 2744 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑎))
892, 80, 88abvcxp 27578 . . . . . 6 (((abs ↾ ℚ) ∈ 𝐴𝑎 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9084, 89mpan 690 . . . . 5 (𝑎 ∈ (0(,]1) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
91 eleq1 2822 . . . . 5 (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9290, 91syl5ibrcom 247 . . . 4 (𝑎 ∈ (0(,]1) → (𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9392rexlimiv 3134 . . 3 (∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
941, 2, 3padicabvcxp 27595 . . . . . . 7 ((𝑝 ∈ ℙ ∧ 𝑎 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
9594ancoms 458 . . . . . 6 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴)
96 eleq1 2822 . . . . . 6 (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → (𝐹𝐴 ↔ (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) ∈ 𝐴))
9795, 96syl5ibrcom 247 . . . . 5 ((𝑎 ∈ ℝ+𝑝 ∈ ℙ) → (𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴))
9897rexlimivv 3186 . . . 4 (∃𝑎 ∈ ℝ+𝑝 ∈ ℙ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑝)‘𝑦)↑𝑐𝑎)) → 𝐹𝐴)
9954, 98sylbi 217 . . 3 (∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎)) → 𝐹𝐴)
10083, 93, 993jaoi 1430 . 2 ((𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))) → 𝐹𝐴)
10177, 100impbii 209 1 (𝐹𝐴 ↔ (𝐹 = 𝐾 ∨ ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) ∨ ∃𝑎 ∈ ℝ+𝑔 ∈ ran 𝐽 𝐹 = (𝑦 ∈ ℚ ↦ ((𝑔𝑦)↑𝑐𝑎))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  ifcif 4500   class class class wbr 5119  cmpt 5201  ran crn 5655  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cle 11270  -cneg 11467   / cdiv 11894  cn 12240  2c2 12295  cuz 12852  cq 12964  +crp 13008  (,]cioc 13363  cexp 14079  abscabs 15253  cprime 16690   pCnt cpc 16856  s cress 17251  DivRingcdr 20689  AbsValcabv 20768  fldccnfld 21315  logclog 26515  𝑐ccxp 26516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-dvr 20361  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-drng 20691  df-abv 20769  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-cxp 26518
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator