Proof of Theorem f1dom3fv3dif
Step | Hyp | Ref
| Expression |
1 | | f1dom3fv3dif.n |
. . . 4
⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶)) |
2 | 1 | simp1d 1140 |
. . 3
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3 | | f1dom3fv3dif.f |
. . . . 5
⊢ (𝜑 → 𝐹:{𝐴, 𝐵, 𝐶}–1-1→𝑅) |
4 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → 𝐴 = 𝐴) |
5 | 4 | 3mix1d 1334 |
. . . . . 6
⊢ (𝜑 → (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
6 | | f1dom3fv3dif.v |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
7 | 6 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
8 | | eltpg 4618 |
. . . . . . 7
⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
9 | 7, 8 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
10 | 5, 9 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ {𝐴, 𝐵, 𝐶}) |
11 | | eqidd 2739 |
. . . . . . 7
⊢ (𝜑 → 𝐵 = 𝐵) |
12 | 11 | 3mix2d 1335 |
. . . . . 6
⊢ (𝜑 → (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
13 | 6 | simp2d 1141 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑌) |
14 | | eltpg 4618 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶))) |
16 | 12, 15 | mpbird 256 |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ {𝐴, 𝐵, 𝐶}) |
17 | | f1fveq 7116 |
. . . . 5
⊢ ((𝐹:{𝐴, 𝐵, 𝐶}–1-1→𝑅 ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐵 ∈ {𝐴, 𝐵, 𝐶})) → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 = 𝐵)) |
18 | 3, 10, 16, 17 | syl12anc 833 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 = 𝐵)) |
19 | 18 | necon3bid 2987 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐴) ≠ (𝐹‘𝐵) ↔ 𝐴 ≠ 𝐵)) |
20 | 2, 19 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹‘𝐴) ≠ (𝐹‘𝐵)) |
21 | 1 | simp2d 1141 |
. . 3
⊢ (𝜑 → 𝐴 ≠ 𝐶) |
22 | 6 | simp3d 1142 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ 𝑍) |
23 | | tpid3g 4705 |
. . . . . 6
⊢ (𝐶 ∈ 𝑍 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
24 | 22, 23 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
25 | | f1fveq 7116 |
. . . . 5
⊢ ((𝐹:{𝐴, 𝐵, 𝐶}–1-1→𝑅 ∧ (𝐴 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶})) → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐴 = 𝐶)) |
26 | 3, 10, 24, 25 | syl12anc 833 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐶) ↔ 𝐴 = 𝐶)) |
27 | 26 | necon3bid 2987 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐴) ≠ (𝐹‘𝐶) ↔ 𝐴 ≠ 𝐶)) |
28 | 21, 27 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹‘𝐴) ≠ (𝐹‘𝐶)) |
29 | 1 | simp3d 1142 |
. . 3
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
30 | | f1fveq 7116 |
. . . . 5
⊢ ((𝐹:{𝐴, 𝐵, 𝐶}–1-1→𝑅 ∧ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶})) → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) |
31 | 3, 16, 24, 30 | syl12anc 833 |
. . . 4
⊢ (𝜑 → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) |
32 | 31 | necon3bid 2987 |
. . 3
⊢ (𝜑 → ((𝐹‘𝐵) ≠ (𝐹‘𝐶) ↔ 𝐵 ≠ 𝐶)) |
33 | 29, 32 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐹‘𝐵) ≠ (𝐹‘𝐶)) |
34 | 20, 28, 33 | 3jca 1126 |
1
⊢ (𝜑 → ((𝐹‘𝐴) ≠ (𝐹‘𝐵) ∧ (𝐹‘𝐴) ≠ (𝐹‘𝐶) ∧ (𝐹‘𝐵) ≠ (𝐹‘𝐶))) |