| Step | Hyp | Ref
| Expression |
| 1 | | nofun 27694 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → Fun 𝐴) |
| 2 | | funfn 6596 |
. . . . . . . . 9
⊢ (Fun
𝐴 ↔ 𝐴 Fn dom 𝐴) |
| 3 | 1, 2 | sylib 218 |
. . . . . . . 8
⊢ (𝐴 ∈
No → 𝐴 Fn dom
𝐴) |
| 4 | | nodmon 27695 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → dom 𝐴
∈ On) |
| 5 | | 1on 8518 |
. . . . . . . . 9
⊢
1o ∈ On |
| 6 | | fnsng 6618 |
. . . . . . . . 9
⊢ ((dom
𝐴 ∈ On ∧
1o ∈ On) → {〈dom 𝐴, 1o〉} Fn {dom 𝐴}) |
| 7 | 4, 5, 6 | sylancl 586 |
. . . . . . . 8
⊢ (𝐴 ∈
No → {〈dom 𝐴, 1o〉} Fn {dom 𝐴}) |
| 8 | | nodmord 27698 |
. . . . . . . . . 10
⊢ (𝐴 ∈
No → Ord dom 𝐴) |
| 9 | | ordirr 6402 |
. . . . . . . . . 10
⊢ (Ord dom
𝐴 → ¬ dom 𝐴 ∈ dom 𝐴) |
| 10 | 8, 9 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈
No → ¬ dom 𝐴 ∈ dom 𝐴) |
| 11 | | disjsn 4711 |
. . . . . . . . 9
⊢ ((dom
𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom
𝐴 ∈ dom 𝐴) |
| 12 | 10, 11 | sylibr 234 |
. . . . . . . 8
⊢ (𝐴 ∈
No → (dom 𝐴
∩ {dom 𝐴}) =
∅) |
| 13 | | snidg 4660 |
. . . . . . . . 9
⊢ (dom
𝐴 ∈ On → dom
𝐴 ∈ {dom 𝐴}) |
| 14 | 4, 13 | syl 17 |
. . . . . . . 8
⊢ (𝐴 ∈
No → dom 𝐴
∈ {dom 𝐴}) |
| 15 | | fvun2 7001 |
. . . . . . . 8
⊢ ((𝐴 Fn dom 𝐴 ∧ {〈dom 𝐴, 1o〉} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = ({〈dom 𝐴, 1o〉}‘dom
𝐴)) |
| 16 | 3, 7, 12, 14, 15 | syl112anc 1376 |
. . . . . . 7
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘dom 𝐴) = ({〈dom 𝐴, 1o〉}‘dom 𝐴)) |
| 17 | | fvsng 7200 |
. . . . . . . 8
⊢ ((dom
𝐴 ∈ On ∧
1o ∈ On) → ({〈dom 𝐴, 1o〉}‘dom 𝐴) =
1o) |
| 18 | 4, 5, 17 | sylancl 586 |
. . . . . . 7
⊢ (𝐴 ∈
No → ({〈dom 𝐴, 1o〉}‘dom 𝐴) =
1o) |
| 19 | 16, 18 | eqtrd 2777 |
. . . . . 6
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘dom 𝐴) = 1o) |
| 20 | | ndmfv 6941 |
. . . . . . 7
⊢ (¬
dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅) |
| 21 | 10, 20 | syl 17 |
. . . . . 6
⊢ (𝐴 ∈
No → (𝐴‘dom 𝐴) = ∅) |
| 22 | 19, 21 | jca 511 |
. . . . 5
⊢ (𝐴 ∈
No → (((𝐴
∪ {〈dom 𝐴,
1o〉})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅)) |
| 23 | 22 | 3mix1d 1337 |
. . . 4
⊢ (𝐴 ∈
No → ((((𝐴
∪ {〈dom 𝐴,
1o〉})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o))) |
| 24 | | fvex 6919 |
. . . . 5
⊢ ((𝐴 ∪ {〈dom 𝐴,
1o〉})‘dom 𝐴) ∈ V |
| 25 | | fvex 6919 |
. . . . 5
⊢ (𝐴‘dom 𝐴) ∈ V |
| 26 | 24, 25 | brtp 5528 |
. . . 4
⊢ (((𝐴 ∪ {〈dom 𝐴,
1o〉})‘dom 𝐴){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o))) |
| 27 | 23, 26 | sylibr 234 |
. . 3
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘dom 𝐴){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘dom 𝐴)) |
| 28 | | necom 2994 |
. . . . . . 7
⊢ (((𝐴 ∪ {〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥) ↔ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥)) |
| 29 | 28 | rabbii 3442 |
. . . . . 6
⊢ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)} = {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥)} |
| 30 | 29 | inteqi 4950 |
. . . . 5
⊢ ∩ {𝑥
∈ On ∣ ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)} = ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥)} |
| 31 | | 1oex 8516 |
. . . . . . 7
⊢
1o ∈ V |
| 32 | 31 | prid1 4762 |
. . . . . 6
⊢
1o ∈ {1o, 2o} |
| 33 | 32 | noextenddif 27713 |
. . . . 5
⊢ (𝐴 ∈
No → ∩ {𝑥 ∈ On ∣ (𝐴‘𝑥) ≠ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥)} = dom 𝐴) |
| 34 | 30, 33 | eqtrid 2789 |
. . . 4
⊢ (𝐴 ∈
No → ∩ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥) ≠ (𝐴‘𝑥)} = dom 𝐴) |
| 35 | 34 | fveq2d 6910 |
. . 3
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘∩ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥) ≠ (𝐴‘𝑥)}) = ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘dom 𝐴)) |
| 36 | 34 | fveq2d 6910 |
. . 3
⊢ (𝐴 ∈
No → (𝐴‘∩ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)}) = (𝐴‘dom 𝐴)) |
| 37 | 27, 35, 36 | 3brtr4d 5175 |
. 2
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘∩ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)})) |
| 38 | 32 | noextend 27711 |
. . 3
⊢ (𝐴 ∈
No → (𝐴 ∪
{〈dom 𝐴,
1o〉}) ∈ No
) |
| 39 | | sltval2 27701 |
. . 3
⊢ (((𝐴 ∪ {〈dom 𝐴, 1o〉}) ∈
No ∧ 𝐴 ∈ No )
→ ((𝐴 ∪ {〈dom
𝐴, 1o〉})
<s 𝐴 ↔ ((𝐴 ∪ {〈dom 𝐴,
1o〉})‘∩ {𝑥 ∈ On ∣ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)}))) |
| 40 | 38, 39 | mpancom 688 |
. 2
⊢ (𝐴 ∈
No → ((𝐴 ∪
{〈dom 𝐴,
1o〉}) <s 𝐴 ↔ ((𝐴 ∪ {〈dom 𝐴, 1o〉})‘∩ {𝑥
∈ On ∣ ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐴‘∩ {𝑥
∈ On ∣ ((𝐴 ∪
{〈dom 𝐴,
1o〉})‘𝑥) ≠ (𝐴‘𝑥)}))) |
| 41 | 37, 40 | mpbird 257 |
1
⊢ (𝐴 ∈
No → (𝐴 ∪
{〈dom 𝐴,
1o〉}) <s 𝐴) |