MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 27732
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27712 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 6608 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 27713 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 8534 . . . . . . . . 9 1o ∈ On
6 fnsng 6630 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
74, 5, 6sylancl 585 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
8 nodmord 27716 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 6413 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4736 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4682 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 7014 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1374 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
17 fvsng 7214 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
184, 5, 17sylancl 585 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
1916, 18eqtrd 2780 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o)
20 ndmfv 6955 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 511 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1336 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
24 fvex 6933 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) ∈ V
25 fvex 6933 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 5542 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴))
28 necom 3000 . . . . . . 7 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥))
2928rabbii 3449 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
3029inteqi 4974 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
31 1oex 8532 . . . . . . 7 1o ∈ V
3231prid1 4787 . . . . . 6 1o ∈ {1o, 2o}
3332noextenddif 27731 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)} = dom 𝐴)
3430, 33eqtrid 2792 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3534fveq2d 6924 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴))
3634fveq2d 6924 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3727, 35, 363brtr4d 5198 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}))
3832noextend 27729 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No )
39 sltval2 27719 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4038, 39mpancom 687 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4137, 40mpbird 257 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1537  wcel 2108  wne 2946  {crab 3443  cun 3974  cin 3975  c0 4352  {csn 4648  {ctp 4652  cop 4654   cint 4970   class class class wbr 5166  dom cdm 5700  Ord word 6394  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  cfv 6573  1oc1o 8515  2oc2o 8516   No csur 27702   <s cslt 27703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706
This theorem is referenced by:  noinfbnd1  27792
  Copyright terms: Public domain W3C validator