MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 27579
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27559 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 6512 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 27560 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 8400 . . . . . . . . 9 1o ∈ On
6 fnsng 6534 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
74, 5, 6sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
8 nodmord 27563 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 6325 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4663 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4612 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 6915 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
17 fvsng 7116 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
184, 5, 17sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
1916, 18eqtrd 2764 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o)
20 ndmfv 6855 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 511 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1337 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
24 fvex 6835 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) ∈ V
25 fvex 6835 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 5466 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴))
28 necom 2978 . . . . . . 7 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥))
2928rabbii 3400 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
3029inteqi 4900 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
31 1oex 8398 . . . . . . 7 1o ∈ V
3231prid1 4714 . . . . . 6 1o ∈ {1o, 2o}
3332noextenddif 27578 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)} = dom 𝐴)
3430, 33eqtrid 2776 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3534fveq2d 6826 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴))
3634fveq2d 6826 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3727, 35, 363brtr4d 5124 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}))
3832noextend 27576 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No )
39 sltval2 27566 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4038, 39mpancom 688 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4137, 40mpbird 257 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  {crab 3394  cun 3901  cin 3902  c0 4284  {csn 4577  {ctp 4581  cop 4583   cint 4896   class class class wbr 5092  dom cdm 5619  Ord word 6306  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  cfv 6482  1oc1o 8381  2oc2o 8382   No csur 27549   <s cslt 27550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-1o 8388  df-2o 8389  df-no 27552  df-slt 27553
This theorem is referenced by:  noinfbnd1  27639
  Copyright terms: Public domain W3C validator