MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 27714
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27694 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 6596 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 27695 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 8518 . . . . . . . . 9 1o ∈ On
6 fnsng 6618 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
74, 5, 6sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
8 nodmord 27698 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 6402 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4711 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4660 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 7001 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
17 fvsng 7200 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
184, 5, 17sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
1916, 18eqtrd 2777 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o)
20 ndmfv 6941 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 511 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1337 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
24 fvex 6919 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) ∈ V
25 fvex 6919 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 5528 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴))
28 necom 2994 . . . . . . 7 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥))
2928rabbii 3442 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
3029inteqi 4950 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
31 1oex 8516 . . . . . . 7 1o ∈ V
3231prid1 4762 . . . . . 6 1o ∈ {1o, 2o}
3332noextenddif 27713 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)} = dom 𝐴)
3430, 33eqtrid 2789 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3534fveq2d 6910 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴))
3634fveq2d 6910 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3727, 35, 363brtr4d 5175 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}))
3832noextend 27711 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No )
39 sltval2 27701 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4038, 39mpancom 688 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4137, 40mpbird 257 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  wne 2940  {crab 3436  cun 3949  cin 3950  c0 4333  {csn 4626  {ctp 4630  cop 4632   cint 4946   class class class wbr 5143  dom cdm 5685  Ord word 6383  Oncon0 6384  Fun wfun 6555   Fn wfn 6556  cfv 6561  1oc1o 8499  2oc2o 8500   No csur 27684   <s cslt 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-br 5144  df-opab 5206  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-1o 8506  df-2o 8507  df-no 27687  df-slt 27688
This theorem is referenced by:  noinfbnd1  27774
  Copyright terms: Public domain W3C validator