MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 27638
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 27618 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 6571 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 218 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 27619 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 8497 . . . . . . . . 9 1o ∈ On
6 fnsng 6593 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
74, 5, 6sylancl 586 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
8 nodmord 27622 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 6375 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4692 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 234 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4641 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 6976 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1376 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
17 fvsng 7177 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
184, 5, 17sylancl 586 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
1916, 18eqtrd 2771 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o)
20 ndmfv 6916 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 511 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1337 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
24 fvex 6894 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) ∈ V
25 fvex 6894 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 5503 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
2723, 26sylibr 234 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴))
28 necom 2986 . . . . . . 7 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥))
2928rabbii 3426 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
3029inteqi 4931 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
31 1oex 8495 . . . . . . 7 1o ∈ V
3231prid1 4743 . . . . . 6 1o ∈ {1o, 2o}
3332noextenddif 27637 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)} = dom 𝐴)
3430, 33eqtrid 2783 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3534fveq2d 6885 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴))
3634fveq2d 6885 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3727, 35, 363brtr4d 5156 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}))
3832noextend 27635 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No )
39 sltval2 27625 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4038, 39mpancom 688 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4137, 40mpbird 257 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2933  {crab 3420  cun 3929  cin 3930  c0 4313  {csn 4606  {ctp 4610  cop 4612   cint 4927   class class class wbr 5124  dom cdm 5659  Ord word 6356  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  cfv 6536  1oc1o 8478  2oc2o 8479   No csur 27608   <s cslt 27609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612
This theorem is referenced by:  noinfbnd1  27698
  Copyright terms: Public domain W3C validator