Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noextendlt Structured version   Visualization version   GIF version

Theorem noextendlt 33289
Description: Extending a surreal with a negative sign results in a smaller surreal. (Contributed by Scott Fenton, 22-Nov-2021.)
Assertion
Ref Expression
noextendlt (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)

Proof of Theorem noextendlt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nofun 33269 . . . . . . . . 9 (𝐴 No → Fun 𝐴)
2 funfn 6354 . . . . . . . . 9 (Fun 𝐴𝐴 Fn dom 𝐴)
31, 2sylib 221 . . . . . . . 8 (𝐴 No 𝐴 Fn dom 𝐴)
4 nodmon 33270 . . . . . . . . 9 (𝐴 No → dom 𝐴 ∈ On)
5 1on 8092 . . . . . . . . 9 1o ∈ On
6 fnsng 6376 . . . . . . . . 9 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
74, 5, 6sylancl 589 . . . . . . . 8 (𝐴 No → {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴})
8 nodmord 33273 . . . . . . . . . 10 (𝐴 No → Ord dom 𝐴)
9 ordirr 6177 . . . . . . . . . 10 (Ord dom 𝐴 → ¬ dom 𝐴 ∈ dom 𝐴)
108, 9syl 17 . . . . . . . . 9 (𝐴 No → ¬ dom 𝐴 ∈ dom 𝐴)
11 disjsn 4607 . . . . . . . . 9 ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ↔ ¬ dom 𝐴 ∈ dom 𝐴)
1210, 11sylibr 237 . . . . . . . 8 (𝐴 No → (dom 𝐴 ∩ {dom 𝐴}) = ∅)
13 snidg 4559 . . . . . . . . 9 (dom 𝐴 ∈ On → dom 𝐴 ∈ {dom 𝐴})
144, 13syl 17 . . . . . . . 8 (𝐴 No → dom 𝐴 ∈ {dom 𝐴})
15 fvun2 6730 . . . . . . . 8 ((𝐴 Fn dom 𝐴 ∧ {⟨dom 𝐴, 1o⟩} Fn {dom 𝐴} ∧ ((dom 𝐴 ∩ {dom 𝐴}) = ∅ ∧ dom 𝐴 ∈ {dom 𝐴})) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
163, 7, 12, 14, 15syl112anc 1371 . . . . . . 7 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ({⟨dom 𝐴, 1o⟩}‘dom 𝐴))
17 fvsng 6919 . . . . . . . 8 ((dom 𝐴 ∈ On ∧ 1o ∈ On) → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
184, 5, 17sylancl 589 . . . . . . 7 (𝐴 No → ({⟨dom 𝐴, 1o⟩}‘dom 𝐴) = 1o)
1916, 18eqtrd 2833 . . . . . 6 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o)
20 ndmfv 6675 . . . . . . 7 (¬ dom 𝐴 ∈ dom 𝐴 → (𝐴‘dom 𝐴) = ∅)
2110, 20syl 17 . . . . . 6 (𝐴 No → (𝐴‘dom 𝐴) = ∅)
2219, 21jca 515 . . . . 5 (𝐴 No → (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅))
23223mix1d 1333 . . . 4 (𝐴 No → ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
24 fvex 6658 . . . . 5 ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) ∈ V
25 fvex 6658 . . . . 5 (𝐴‘dom 𝐴) ∈ V
2624, 25brtp 33098 . . . 4 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴) ↔ ((((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = ∅) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = 1o ∧ (𝐴‘dom 𝐴) = 2o) ∨ (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴) = ∅ ∧ (𝐴‘dom 𝐴) = 2o)))
2723, 26sylibr 237 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴‘dom 𝐴))
28 necom 3040 . . . . . . 7 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥) ↔ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥))
2928rabbii 3420 . . . . . 6 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
3029inteqi 4842 . . . . 5 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)}
31 1oex 8093 . . . . . . 7 1o ∈ V
3231prid1 4658 . . . . . 6 1o ∈ {1o, 2o}
3332noextenddif 33288 . . . . 5 (𝐴 No {𝑥 ∈ On ∣ (𝐴𝑥) ≠ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥)} = dom 𝐴)
3430, 33syl5eq 2845 . . . 4 (𝐴 No {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)} = dom 𝐴)
3534fveq2d 6649 . . 3 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘dom 𝐴))
3634fveq2d 6649 . . 3 (𝐴 No → (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}) = (𝐴‘dom 𝐴))
3727, 35, 363brtr4d 5062 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}))
3832noextend 33286 . . 3 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No )
39 sltval2 33276 . . 3 (((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) ∈ No 𝐴 No ) → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4038, 39mpancom 687 . 2 (𝐴 No → ((𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴 ↔ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘ {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐴 {𝑥 ∈ On ∣ ((𝐴 ∪ {⟨dom 𝐴, 1o⟩})‘𝑥) ≠ (𝐴𝑥)})))
4137, 40mpbird 260 1 (𝐴 No → (𝐴 ∪ {⟨dom 𝐴, 1o⟩}) <s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1083   = wceq 1538  wcel 2111  wne 2987  {crab 3110  cun 3879  cin 3880  c0 4243  {csn 4525  {ctp 4529  cop 4531   cint 4838   class class class wbr 5030  dom cdm 5519  Ord word 6158  Oncon0 6159  Fun wfun 6318   Fn wfn 6319  cfv 6324  1oc1o 8078  2oc2o 8079   No csur 33260   <s cslt 33261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-1o 8085  df-2o 8086  df-no 33263  df-slt 33264
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator