Step | Hyp | Ref
| Expression |
1 | | elun 4079 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛})) |
2 | | elun 4079 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧})) |
3 | | simp1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑧 ∈
ℤ) |
4 | 3 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∈
ℤ) |
5 | 4 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ) |
6 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 = 𝑧 → {𝑛} = {𝑧}) |
7 | 6 | uneq2d 4093 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧})) |
8 | 7 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧}))) |
9 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑧 → ((lcm‘𝑦) lcm 𝑛) = ((lcm‘𝑦) lcm 𝑧)) |
10 | 8, 9 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧))) |
11 | 10 | rspcv 3547 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ ℤ →
(∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
12 | 5, 11 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) →
(lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧))) |
13 | | ssel 3910 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 ⊆ ℤ → (𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ)) |
14 | 13 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ)) |
15 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ)) |
16 | 15 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∈ ℤ) |
17 | | lcmfcl 16261 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℕ0) |
18 | 17 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
19 | 18 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
20 | 19 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
(lcm‘𝑦) ∈
ℤ) |
21 | 20 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
(lcm‘𝑦) ∈
ℤ) |
22 | | lcmcl 16234 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈
ℕ0) |
23 | 3, 22 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈
ℕ0) |
24 | 23 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℤ) |
25 | 24 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (𝑧 lcm 𝑛) ∈ ℤ) |
26 | | lcmcl 16234 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((lcm‘𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) →
((lcm‘𝑦) lcm
(𝑧 lcm 𝑛)) ∈
ℕ0) |
27 | 21, 25, 26 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
((lcm‘𝑦) lcm
(𝑧 lcm 𝑛)) ∈
ℕ0) |
28 | 27 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
((lcm‘𝑦) lcm
(𝑧 lcm 𝑛)) ∈ ℤ) |
29 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 = 𝑖 → (𝑘 ∥ (lcm‘𝑦) ↔ 𝑖 ∥ (lcm‘𝑦))) |
30 | 29 | rspcv 3547 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑖 ∈ 𝑦 → (∀𝑘 ∈ 𝑦 𝑘 ∥ (lcm‘𝑦) → 𝑖 ∥ (lcm‘𝑦))) |
31 | | dvdslcmf 16264 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
∀𝑘 ∈ 𝑦 𝑘 ∥ (lcm‘𝑦)) |
32 | 31 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
∀𝑘 ∈ 𝑦 𝑘 ∥ (lcm‘𝑦)) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
∀𝑘 ∈ 𝑦 𝑘 ∥ (lcm‘𝑦)) |
34 | 30, 33 | impel 505 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (lcm‘𝑦)) |
35 | 20, 24 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
((lcm‘𝑦)
∈ ℤ ∧ (𝑧 lcm
𝑛) ∈
ℤ)) |
36 | 35 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
((lcm‘𝑦)
∈ ℤ ∧ (𝑧 lcm
𝑛) ∈
ℤ)) |
37 | | dvdslcm 16231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((lcm‘𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) →
((lcm‘𝑦)
∥ ((lcm‘𝑦) lcm (𝑧 lcm 𝑛)) ∧ (𝑧 lcm 𝑛) ∥ ((lcm‘𝑦) lcm (𝑧 lcm 𝑛)))) |
38 | 37 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((lcm‘𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) →
(lcm‘𝑦)
∥ ((lcm‘𝑦) lcm (𝑧 lcm 𝑛))) |
39 | 36, 38 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
(lcm‘𝑦)
∥ ((lcm‘𝑦) lcm (𝑧 lcm 𝑛))) |
40 | 16, 21, 28, 34, 39 | dvdstrd 15932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ ((lcm‘𝑦) lcm (𝑧 lcm 𝑛))) |
41 | 4 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ) |
42 | | simprr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℤ) |
43 | | lcmass 16247 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) →
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) = ((lcm‘𝑦) lcm (𝑧 lcm 𝑛))) |
44 | 21, 41, 42, 43 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) = ((lcm‘𝑦) lcm (𝑧 lcm 𝑛))) |
45 | 40, 44 | breqtrrd 5098 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ 𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛)) |
46 | 45 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ 𝑦 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
47 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ {𝑧} → 𝑖 = 𝑧) |
48 | 17 | 3adant1 1128 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℕ0) |
49 | 48 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘𝑦) ∈
ℤ) |
50 | | lcmcl 16234 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
((lcm‘𝑦) lcm
𝑧) ∈
ℕ0) |
51 | 49, 3, 50 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘𝑦) lcm
𝑧) ∈
ℕ0) |
52 | 51 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘𝑦) lcm
𝑧) ∈
ℤ) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
((lcm‘𝑦) lcm
𝑧) ∈
ℤ) |
54 | | lcmcl 16234 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((lcm‘𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) →
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) ∈
ℕ0) |
55 | 52, 54 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) ∈
ℕ0) |
56 | 55 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) ∈ ℤ) |
57 | 19, 3 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
((lcm‘𝑦)
∈ ℤ ∧ 𝑧
∈ ℤ)) |
58 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
((lcm‘𝑦)
∈ ℤ ∧ 𝑧
∈ ℤ)) |
59 | | dvdslcm 16231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) →
((lcm‘𝑦)
∥ ((lcm‘𝑦) lcm 𝑧) ∧ 𝑧 ∥ ((lcm‘𝑦) lcm 𝑧))) |
60 | 59 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((lcm‘𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ ((lcm‘𝑦) lcm 𝑧)) |
61 | 58, 60 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥
((lcm‘𝑦) lcm
𝑧)) |
62 | | dvdslcm 16231 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((lcm‘𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) →
(((lcm‘𝑦) lcm
𝑧) ∥
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛) ∧ 𝑛 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
63 | 62 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((lcm‘𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) →
((lcm‘𝑦) lcm
𝑧) ∥
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛)) |
64 | 52, 63 | sylan 579 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
((lcm‘𝑦) lcm
𝑧) ∥
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛)) |
65 | 4, 53, 56, 61, 64 | dvdstrd 15932 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥
(((lcm‘𝑦) lcm
𝑧) lcm 𝑛)) |
66 | | breq1 5073 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 = 𝑧 → (𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛) ↔ 𝑧 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
67 | 65, 66 | syl5ibr 245 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 = 𝑧 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
68 | 47, 67 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ {𝑧} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
69 | 46, 68 | jaoi 853 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
70 | 69 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛)) |
71 | | oveq1 7262 |
. . . . . . . . . . . . . . . . 17
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (((lcm‘𝑦) lcm 𝑧) lcm 𝑛)) |
72 | 71 | breq2d 5082 |
. . . . . . . . . . . . . . . 16
⊢
((lcm‘(𝑦 ∪ {𝑧})) = ((lcm‘𝑦) lcm 𝑧) → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑖 ∥ (((lcm‘𝑦) lcm 𝑧) lcm 𝑛))) |
73 | 70, 72 | syl5ibrcom 246 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) →
((lcm‘(𝑦 ∪
{𝑧})) =
((lcm‘𝑦) lcm
𝑧) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛))) |
74 | 12, 73 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛))) |
75 | 74 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ 𝑦 ∨ 𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
76 | 2, 75 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (𝑦 ∪ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
77 | | elsni 4575 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ {𝑛} → 𝑖 = 𝑛) |
78 | | simp2 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆
ℤ) |
79 | | snssi 4738 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈ ℤ → {𝑧} ⊆
ℤ) |
80 | 79 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆
ℤ) |
81 | 78, 80 | unssd 4116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
82 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin) |
83 | | snfi 8788 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ {𝑧} ∈ Fin |
84 | | unfi 8917 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
85 | 82, 83, 84 | sylancl 585 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin) |
86 | | lcmfcl 16261 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
87 | 81, 85, 86 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℕ0) |
88 | 87 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) →
(lcm‘(𝑦 ∪
{𝑧})) ∈
ℤ) |
89 | 88 | anim1i 614 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) →
((lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈
ℤ)) |
90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧
∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛)) →
((lcm‘(𝑦 ∪
{𝑧})) ∈ ℤ ∧
𝑛 ∈
ℤ)) |
91 | | dvdslcm 16231 |
. . . . . . . . . . . . . . . . 17
⊢
(((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) →
((lcm‘(𝑦 ∪
{𝑧})) ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
92 | 90, 91 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧
∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛)) →
((lcm‘(𝑦 ∪
{𝑧})) ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
93 | 92 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧
∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛)) → 𝑛 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)) |
94 | | breq1 5073 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑛 → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
95 | 93, 94 | syl5ibr 245 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑛 → ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛)) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛))) |
96 | 95 | expd 415 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑛 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
97 | 77, 96 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ {𝑛} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
98 | 76, 97 | jaoi 853 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
99 | 1, 98 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ
(lcm‘(𝑦 ∪
{𝑛})) =
((lcm‘𝑦) lcm
𝑛) → 𝑖 ∥
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛)))) |
100 | 99 | com13 88 |
. . . . . . . . 9
⊢
(∀𝑛 ∈
ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
101 | 100 | expd 415 |
. . . . . . . 8
⊢
(∀𝑛 ∈
ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
102 | 101 | adantl 481 |
. . . . . . 7
⊢
((∀𝑘 ∈
ℤ (∀𝑚 ∈
𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))) |
103 | 102 | impcom 407 |
. . . . . 6
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))) |
104 | 103 | impcom 407 |
. . . . 5
⊢ ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
105 | 104 | adantl 481 |
. . . 4
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))) |
106 | 105 | ralrimiv 3106 |
. . 3
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |
107 | | lcmfunsnlem2lem1 16271 |
. . 3
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)) |
108 | 89 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ)) |
109 | 81 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ⊆ ℤ) |
110 | 85 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ∈ Fin) |
111 | | df-nel 3049 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0
∉ 𝑦 ↔ ¬ 0
∈ 𝑦) |
112 | 111 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0
∉ 𝑦 → ¬ 0
∈ 𝑦) |
113 | 112 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ 𝑦) |
114 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (0 ∈
{𝑧} → 0 = 𝑧) |
115 | 114 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
{𝑧} → 𝑧 = 0) |
116 | 115 | necon3ai 2967 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ≠ 0 → ¬ 0 ∈
{𝑧}) |
117 | 116 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ {𝑧}) |
118 | | ioran 980 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ (0
∈ 𝑦 ∨ 0 ∈
{𝑧}) ↔ (¬ 0 ∈
𝑦 ∧ ¬ 0 ∈
{𝑧})) |
119 | 113, 117,
118 | sylanbrc 582 |
. . . . . . . . . . . . . . . . 17
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧})) |
120 | | elun 4079 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
(𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧})) |
121 | 119, 120 | sylnibr 328 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ (𝑦 ∪ {𝑧})) |
122 | | df-nel 3049 |
. . . . . . . . . . . . . . . 16
⊢ (0
∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧})) |
123 | 121, 122 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧})) |
124 | | lcmfn0cl 16259 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ) |
125 | 109, 110,
123, 124 | syl2an3an 1420 |
. . . . . . . . . . . . . 14
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ) |
126 | 125 | nnne0d 11953 |
. . . . . . . . . . . . 13
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0) |
127 | 126 | neneqd 2947 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬
(lcm‘(𝑦 ∪
{𝑧})) = 0) |
128 | | neneq 2948 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ≠ 0 → ¬ 𝑛 = 0) |
129 | 128 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0) |
130 | 129 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ 𝑛 = 0) |
131 | | ioran 980 |
. . . . . . . . . . . 12
⊢ (¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬
(lcm‘(𝑦 ∪
{𝑧})) = 0 ∧ ¬ 𝑛 = 0)) |
132 | 127, 130,
131 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0)) |
133 | | lcmn0cl 16230 |
. . . . . . . . . . 11
⊢
((((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬
((lcm‘(𝑦 ∪
{𝑧})) = 0 ∨ 𝑛 = 0)) →
((lcm‘(𝑦 ∪
{𝑧})) lcm 𝑛) ∈
ℕ) |
134 | 108, 132,
133 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ) |
135 | | snssi 4738 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℤ → {𝑛} ⊆
ℤ) |
136 | 135 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → {𝑛} ⊆
ℤ) |
137 | 109, 136 | unssd 4116 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ) |
138 | 137 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ) |
139 | 83, 84 | mpan2 687 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin) |
140 | | snfi 8788 |
. . . . . . . . . . . . . . 15
⊢ {𝑛} ∈ Fin |
141 | | unfi 8917 |
. . . . . . . . . . . . . . 15
⊢ (((𝑦 ∪ {𝑧}) ∈ Fin ∧ {𝑛} ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin) |
142 | 139, 140,
141 | sylancl 585 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin) |
143 | 142 | 3ad2ant3 1133 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin) |
144 | 143 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin) |
145 | 144 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin) |
146 | | elun 4079 |
. . . . . . . . . . . . . . . 16
⊢ (0 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛})) |
147 | | nnel 3057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬ 0
∉ 𝑦 ↔ 0 ∈
𝑦) |
148 | 147 | biimpri 227 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
𝑦 → ¬ 0 ∉
𝑦) |
149 | 148 | 3mix1d 1334 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
𝑦 → (¬ 0 ∉
𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
150 | | nne 2946 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (¬
𝑧 ≠ 0 ↔ 𝑧 = 0) |
151 | 115, 150 | sylibr 233 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
{𝑧} → ¬ 𝑧 ≠ 0) |
152 | 151 | 3mix2d 1335 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
{𝑧} → (¬ 0 ∉
𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
153 | 149, 152 | jaoi 853 |
. . . . . . . . . . . . . . . . . 18
⊢ ((0
∈ 𝑦 ∨ 0 ∈
{𝑧}) → (¬ 0
∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
154 | 120, 153 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
(𝑦 ∪ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
155 | | elsni 4575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0 ∈
{𝑛} → 0 = 𝑛) |
156 | 155 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (0 ∈
{𝑛} → 𝑛 = 0) |
157 | | nne 2946 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
𝑛 ≠ 0 ↔ 𝑛 = 0) |
158 | 156, 157 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 ∈
{𝑛} → ¬ 𝑛 ≠ 0) |
159 | 158 | 3mix3d 1336 |
. . . . . . . . . . . . . . . . 17
⊢ (0 ∈
{𝑛} → (¬ 0 ∉
𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
160 | 154, 159 | jaoi 853 |
. . . . . . . . . . . . . . . 16
⊢ ((0
∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
161 | 146, 160 | sylbi 216 |
. . . . . . . . . . . . . . 15
⊢ (0 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
162 | | 3ianor 1105 |
. . . . . . . . . . . . . . 15
⊢ (¬ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ↔ (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0)) |
163 | 161, 162 | sylibr 233 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
((𝑦 ∪ {𝑧}) ∪ {𝑛}) → ¬ (0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) |
164 | 163 | con2i 139 |
. . . . . . . . . . . . 13
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
165 | | df-nel 3049 |
. . . . . . . . . . . . 13
⊢ (0
∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
166 | 164, 165 | sylibr 233 |
. . . . . . . . . . . 12
⊢ ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
167 | 166 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})) |
168 | 138, 145,
167 | 3jca 1126 |
. . . . . . . . . 10
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))) |
169 | 134, 168 | jca 511 |
. . . . . . . . 9
⊢ ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))) |
170 | 169 | ex 412 |
. . . . . . . 8
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))) |
171 | 170 | ex 412 |
. . . . . . 7
⊢ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → ((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))) |
172 | 171 | adantr 480 |
. . . . . 6
⊢ (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))) |
173 | 172 | impcom 407 |
. . . . 5
⊢ ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧
(∀𝑘 ∈ ℤ
(∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))) |
174 | 173 | impcom 407 |
. . . 4
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))) |
175 | | lcmf 16266 |
. . . 4
⊢
((((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)))) |
176 | 174, 175 | syl 17 |
. . 3
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ 𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘)))) |
177 | 106, 107,
176 | mpbir2and 709 |
. 2
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛}))) |
178 | 177 | eqcomd 2744 |
1
⊢ (((0
∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → (lcm‘𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm‘𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)) |