MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem2 16573
Description: Lemma 2 for lcmfunsnlem2 16574. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elun 4148 . . . . . . . . . . 11 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}))
2 elun 4148 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑖𝑦𝑖 ∈ {𝑧}))
3 simp1 1137 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
43adantr 482 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∈ ℤ)
54adantl 483 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
6 sneq 4638 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → {𝑛} = {𝑧})
76uneq2d 4163 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
87fveq2d 6893 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
9 oveq2 7414 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
108, 9eqeq12d 2749 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
1110rspcv 3609 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
125, 11syl 17 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
13 ssel 3975 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ⊆ ℤ → (𝑖𝑦𝑖 ∈ ℤ))
14133ad2ant2 1135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑖𝑦𝑖 ∈ ℤ))
1514adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖𝑦𝑖 ∈ ℤ))
1615impcom 409 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∈ ℤ)
17 lcmfcl 16562 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
1817nn0zd 12581 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
19183adant1 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2019adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
2120adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∈ ℤ)
22 lcmcl 16535 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
233, 22sylan 581 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
2423nn0zd 12581 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℤ)
2524adantl 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (𝑧 lcm 𝑛) ∈ ℤ)
26 lcmcl 16535 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
2721, 25, 26syl2anc 585 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
2827nn0zd 12581 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℤ)
29 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑘 ∥ (lcm𝑦) ↔ 𝑖 ∥ (lcm𝑦)))
3029rspcv 3609 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑦 → (∀𝑘𝑦 𝑘 ∥ (lcm𝑦) → 𝑖 ∥ (lcm𝑦)))
31 dvdslcmf 16565 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
32313adant1 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
3332adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
3430, 33impel 507 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (lcm𝑦))
3520, 24jca 513 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
3635adantl 483 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
37 dvdslcm 16532 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∧ (𝑧 lcm 𝑛) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))))
3837simpld 496 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
3936, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4016, 21, 28, 34, 39dvdstrd 16235 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
414adantl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
42 simprr 772 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℤ)
43 lcmass 16548 . . . . . . . . . . . . . . . . . . . . 21 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4421, 41, 42, 43syl3anc 1372 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4540, 44breqtrrd 5176 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
4645ex 414 . . . . . . . . . . . . . . . . . 18 (𝑖𝑦 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
47 elsni 4645 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
48173adant1 1131 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
4948nn0zd 12581 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
50 lcmcl 16535 . . . . . . . . . . . . . . . . . . . . . . . 24 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5149, 3, 50syl2anc 585 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5251nn0zd 12581 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
5352adantr 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
54 lcmcl 16535 . . . . . . . . . . . . . . . . . . . . . . 23 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
5552, 54sylan 581 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
5655nn0zd 12581 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℤ)
5719, 3jca 513 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
5857adantr 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
59 dvdslcm 16532 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm 𝑧) ∧ 𝑧 ∥ ((lcm𝑦) lcm 𝑧)))
6059simprd 497 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
6158, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
62 dvdslcm 16532 . . . . . . . . . . . . . . . . . . . . . . 23 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∧ 𝑛 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6362simpld 496 . . . . . . . . . . . . . . . . . . . . . 22 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
6452, 63sylan 581 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
654, 53, 56, 61, 64dvdstrd 16235 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
66 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑧 → (𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ↔ 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6765, 66imbitrrid 245 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑧 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6847, 67syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ {𝑧} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6946, 68jaoi 856 . . . . . . . . . . . . . . . . 17 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7069imp 408 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
71 oveq1 7413 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (((lcm𝑦) lcm 𝑧) lcm 𝑛))
7271breq2d 5160 . . . . . . . . . . . . . . . 16 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7370, 72syl5ibrcom 246 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7412, 73syld 47 . . . . . . . . . . . . . 14 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574ex 414 . . . . . . . . . . . . 13 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
762, 75sylbi 216 . . . . . . . . . . . 12 (𝑖 ∈ (𝑦 ∪ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
77 elsni 4645 . . . . . . . . . . . . 13 (𝑖 ∈ {𝑛} → 𝑖 = 𝑛)
78 simp2 1138 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
79 snssi 4811 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
80793ad2ant1 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
8178, 80unssd 4186 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
82 simp3 1139 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
83 snfi 9041 . . . . . . . . . . . . . . . . . . . . . 22 {𝑧} ∈ Fin
84 unfi 9169 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
8582, 83, 84sylancl 587 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
86 lcmfcl 16562 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
8781, 85, 86syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
8887nn0zd 12581 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
8988anim1i 616 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
9089adantr 482 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
91 dvdslcm 16532 . . . . . . . . . . . . . . . . 17 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9290, 91syl 17 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9392simprd 497 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
94 breq1 5151 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9593, 94imbitrrid 245 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9695expd 417 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9777, 96syl 17 . . . . . . . . . . . 12 (𝑖 ∈ {𝑛} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9876, 97jaoi 856 . . . . . . . . . . 11 ((𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
991, 98sylbi 216 . . . . . . . . . 10 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
10099com13 88 . . . . . . . . 9 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
101100expd 417 . . . . . . . 8 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
102101adantl 483 . . . . . . 7 ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
103102impcom 409 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
104103impcom 409 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
105104adantl 483 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ralrimiv 3146 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
107 lcmfunsnlem2lem1 16572 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
10889adantr 482 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
10981adantr 482 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
11085adantr 482 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ∈ Fin)
111 df-nel 3048 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
112111biimpi 215 . . . . . . . . . . . . . . . . . . 19 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
1131123ad2ant1 1134 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ 𝑦)
114 elsni 4645 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ {𝑧} → 0 = 𝑧)
115114eqcomd 2739 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → 𝑧 = 0)
116115necon3ai 2966 . . . . . . . . . . . . . . . . . . 19 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
1171163ad2ant2 1135 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ {𝑧})
118 ioran 983 . . . . . . . . . . . . . . . . . 18 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
119113, 117, 118sylanbrc 584 . . . . . . . . . . . . . . . . 17 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
120 elun 4148 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
121119, 120sylnibr 329 . . . . . . . . . . . . . . . 16 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ (𝑦 ∪ {𝑧}))
122 df-nel 3048 . . . . . . . . . . . . . . . 16 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
123121, 122sylibr 233 . . . . . . . . . . . . . . 15 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
124 lcmfn0cl 16560 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
125109, 110, 123, 124syl2an3an 1423 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
126125nnne0d 12259 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
127126neneqd 2946 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
128 neneq 2947 . . . . . . . . . . . . . 14 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
1291283ad2ant3 1136 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
130129adantl 483 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ 𝑛 = 0)
131 ioran 983 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
132127, 130, 131sylanbrc 584 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
133 lcmn0cl 16531 . . . . . . . . . . 11 ((((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
134108, 132, 133syl2anc 585 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
135 snssi 4811 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → {𝑛} ⊆ ℤ)
136135adantl 483 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → {𝑛} ⊆ ℤ)
137109, 136unssd 4186 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
138137adantr 482 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
13983, 84mpan2 690 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
140 snfi 9041 . . . . . . . . . . . . . . 15 {𝑛} ∈ Fin
141 unfi 9169 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ {𝑛} ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
142139, 140, 141sylancl 587 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
1431423ad2ant3 1136 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
144143adantr 482 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
145144adantr 482 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
146 elun 4148 . . . . . . . . . . . . . . . 16 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
147 nnel 3057 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦)
148147biimpri 227 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ 𝑦 → ¬ 0 ∉ 𝑦)
1491483mix1d 1337 . . . . . . . . . . . . . . . . . . 19 (0 ∈ 𝑦 → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
150 nne 2945 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ≠ 0 ↔ 𝑧 = 0)
151115, 150sylibr 233 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → ¬ 𝑧 ≠ 0)
1521513mix2d 1338 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑧} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
153149, 152jaoi 856 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
154120, 153sylbi 216 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
155 elsni 4645 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑛} → 0 = 𝑛)
156155eqcomd 2739 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑛} → 𝑛 = 0)
157 nne 2945 . . . . . . . . . . . . . . . . . . 19 𝑛 ≠ 0 ↔ 𝑛 = 0)
158156, 157sylibr 233 . . . . . . . . . . . . . . . . . 18 (0 ∈ {𝑛} → ¬ 𝑛 ≠ 0)
1591583mix3d 1339 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑛} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
160154, 159jaoi 856 . . . . . . . . . . . . . . . 16 ((0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
161146, 160sylbi 216 . . . . . . . . . . . . . . 15 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
162 3ianor 1108 . . . . . . . . . . . . . . 15 (¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ↔ (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
163161, 162sylibr 233 . . . . . . . . . . . . . 14 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → ¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))
164163con2i 139 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
165 df-nel 3048 . . . . . . . . . . . . 13 (0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
166164, 165sylibr 233 . . . . . . . . . . . 12 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
167166adantl 483 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
168138, 145, 1673jca 1129 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))
169134, 168jca 513 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
170169ex 414 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
171170ex 414 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
172171adantr 482 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
173172impcom 409 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
174173impcom 409 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
175 lcmf 16567 . . . 4 ((((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
176174, 175syl 17 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
177106, 107, 176mpbir2and 712 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
178177eqcomd 2739 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wnel 3047  wral 3062  cun 3946  wss 3948  {csn 4628   class class class wbr 5148  cfv 6541  (class class class)co 7406  Fincfn 8936  0cc0 11107  cle 11246  cn 12209  0cn0 12469  cz 12555  cdvds 16194   lcm clcm 16522  lcmclcmf 16523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-prod 15847  df-dvds 16195  df-gcd 16433  df-lcm 16524  df-lcmf 16525
This theorem is referenced by:  lcmfunsnlem2  16574
  Copyright terms: Public domain W3C validator