MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem2 15983
Description: Lemma 2 for lcmfunsnlem2 15984. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elun 4125 . . . . . . . . . . 11 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}))
2 elun 4125 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑖𝑦𝑖 ∈ {𝑧}))
3 simp1 1132 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
43adantr 483 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∈ ℤ)
54adantl 484 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
6 sneq 4577 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → {𝑛} = {𝑧})
76uneq2d 4139 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
87fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
9 oveq2 7164 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
108, 9eqeq12d 2837 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
1110rspcv 3618 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
125, 11syl 17 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
13 breq1 5069 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑘 ∥ (lcm𝑦) ↔ 𝑖 ∥ (lcm𝑦)))
1413rspcv 3618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑦 → (∀𝑘𝑦 𝑘 ∥ (lcm𝑦) → 𝑖 ∥ (lcm𝑦)))
15 dvdslcmf 15975 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
16153adant1 1126 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
1716adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
1814, 17impel 508 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (lcm𝑦))
19 lcmfcl 15972 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
2019nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
21203adant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2221adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
23 lcmcl 15945 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
243, 23sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
2524nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℤ)
2622, 25jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
2726adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
28 dvdslcm 15942 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∧ (𝑧 lcm 𝑛) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))))
2928simpld 497 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
3027, 29syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
31 ssel 3961 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ⊆ ℤ → (𝑖𝑦𝑖 ∈ ℤ))
32313ad2ant2 1130 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑖𝑦𝑖 ∈ ℤ))
3332adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖𝑦𝑖 ∈ ℤ))
3433impcom 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∈ ℤ)
3522adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∈ ℤ)
3625adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (𝑧 lcm 𝑛) ∈ ℤ)
37 lcmcl 15945 . . . . . . . . . . . . . . . . . . . . . . . 24 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
3835, 36, 37syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
3938nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℤ)
40 dvdstr 15646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℤ ∧ (lcm𝑦) ∈ ℤ ∧ ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℤ) → ((𝑖 ∥ (lcm𝑦) ∧ (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))) → 𝑖 ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))))
4134, 35, 39, 40syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((𝑖 ∥ (lcm𝑦) ∧ (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))) → 𝑖 ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))))
4218, 30, 41mp2and 697 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
434adantl 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
44 simprr 771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℤ)
45 lcmass 15958 . . . . . . . . . . . . . . . . . . . . 21 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4635, 43, 44, 45syl3anc 1367 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4742, 46breqtrrd 5094 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
4847ex 415 . . . . . . . . . . . . . . . . . 18 (𝑖𝑦 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
49 elsni 4584 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
5021, 3jca 514 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
5150adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
52 dvdslcm 15942 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm 𝑧) ∧ 𝑧 ∥ ((lcm𝑦) lcm 𝑧)))
5352simprd 498 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
5451, 53syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
55193adant1 1126 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
5655nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
57 lcmcl 15945 . . . . . . . . . . . . . . . . . . . . . . . 24 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5856, 3, 57syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5958nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
60 dvdslcm 15942 . . . . . . . . . . . . . . . . . . . . . . 23 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∧ 𝑛 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6160simpld 497 . . . . . . . . . . . . . . . . . . . . . 22 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
6259, 61sylan 582 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
6359adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
64 lcmcl 15945 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
6559, 64sylan 582 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
6665nn0zd 12086 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℤ)
67 dvdstr 15646 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ ((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℤ) → ((𝑧 ∥ ((lcm𝑦) lcm 𝑧) ∧ ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)) → 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
684, 63, 66, 67syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑧 ∥ ((lcm𝑦) lcm 𝑧) ∧ ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)) → 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6954, 62, 68mp2and 697 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
70 breq1 5069 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑧 → (𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ↔ 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7169, 70syl5ibr 248 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑧 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7249, 71syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ {𝑧} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7348, 72jaoi 853 . . . . . . . . . . . . . . . . 17 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7473imp 409 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
75 oveq1 7163 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (((lcm𝑦) lcm 𝑧) lcm 𝑛))
7675breq2d 5078 . . . . . . . . . . . . . . . 16 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7774, 76syl5ibrcom 249 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7812, 77syld 47 . . . . . . . . . . . . . 14 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7978ex 415 . . . . . . . . . . . . 13 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
802, 79sylbi 219 . . . . . . . . . . . 12 (𝑖 ∈ (𝑦 ∪ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
81 elsni 4584 . . . . . . . . . . . . 13 (𝑖 ∈ {𝑛} → 𝑖 = 𝑛)
82 simp2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
83 snssi 4741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
84833ad2ant1 1129 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
8582, 84unssd 4162 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
86 simp3 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
87 snfi 8594 . . . . . . . . . . . . . . . . . . . . . 22 {𝑧} ∈ Fin
88 unfi 8785 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
8986, 87, 88sylancl 588 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
90 lcmfcl 15972 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
9185, 89, 90syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
9291nn0zd 12086 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
9392anim1i 616 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
9493adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
95 dvdslcm 15942 . . . . . . . . . . . . . . . . 17 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9694, 95syl 17 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9796simprd 498 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
98 breq1 5069 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9997, 98syl5ibr 248 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
10099expd 418 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
10181, 100syl 17 . . . . . . . . . . . 12 (𝑖 ∈ {𝑛} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
10280, 101jaoi 853 . . . . . . . . . . 11 ((𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
1031, 102sylbi 219 . . . . . . . . . 10 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
104103com13 88 . . . . . . . . 9 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
105104expd 418 . . . . . . . 8 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
106105adantl 484 . . . . . . 7 ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
107106impcom 410 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
108107impcom 410 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
109108adantl 484 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
110109ralrimiv 3181 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
111 lcmfunsnlem2lem1 15982 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
11293adantr 483 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
11385adantr 483 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
11489adantr 483 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ∈ Fin)
115 df-nel 3124 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
116115biimpi 218 . . . . . . . . . . . . . . . . . . 19 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
1171163ad2ant1 1129 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ 𝑦)
118 elsni 4584 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ {𝑧} → 0 = 𝑧)
119118eqcomd 2827 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → 𝑧 = 0)
120119necon3ai 3041 . . . . . . . . . . . . . . . . . . 19 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
1211203ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ {𝑧})
122 ioran 980 . . . . . . . . . . . . . . . . . 18 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
123117, 121, 122sylanbrc 585 . . . . . . . . . . . . . . . . 17 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
124 elun 4125 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
125123, 124sylnibr 331 . . . . . . . . . . . . . . . 16 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ (𝑦 ∪ {𝑧}))
126 df-nel 3124 . . . . . . . . . . . . . . . 16 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
127125, 126sylibr 236 . . . . . . . . . . . . . . 15 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
128 lcmfn0cl 15970 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
129113, 114, 127, 128syl2an3an 1418 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
130129nnne0d 11688 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
131130neneqd 3021 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
132 neneq 3022 . . . . . . . . . . . . . 14 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
1331323ad2ant3 1131 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
134133adantl 484 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ 𝑛 = 0)
135 ioran 980 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
136131, 134, 135sylanbrc 585 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
137 lcmn0cl 15941 . . . . . . . . . . 11 ((((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
138112, 136, 137syl2anc 586 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
139 snssi 4741 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → {𝑛} ⊆ ℤ)
140139adantl 484 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → {𝑛} ⊆ ℤ)
141113, 140unssd 4162 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
142141adantr 483 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
14387, 88mpan2 689 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
144 snfi 8594 . . . . . . . . . . . . . . 15 {𝑛} ∈ Fin
145 unfi 8785 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ {𝑛} ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
146143, 144, 145sylancl 588 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
1471463ad2ant3 1131 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
148147adantr 483 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
149148adantr 483 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
150 elun 4125 . . . . . . . . . . . . . . . 16 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
151 nnel 3132 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦)
152151biimpri 230 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ 𝑦 → ¬ 0 ∉ 𝑦)
1531523mix1d 1332 . . . . . . . . . . . . . . . . . . 19 (0 ∈ 𝑦 → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
154 nne 3020 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ≠ 0 ↔ 𝑧 = 0)
155119, 154sylibr 236 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → ¬ 𝑧 ≠ 0)
1561553mix2d 1333 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑧} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
157153, 156jaoi 853 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
158124, 157sylbi 219 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
159 elsni 4584 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑛} → 0 = 𝑛)
160159eqcomd 2827 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑛} → 𝑛 = 0)
161 nne 3020 . . . . . . . . . . . . . . . . . . 19 𝑛 ≠ 0 ↔ 𝑛 = 0)
162160, 161sylibr 236 . . . . . . . . . . . . . . . . . 18 (0 ∈ {𝑛} → ¬ 𝑛 ≠ 0)
1631623mix3d 1334 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑛} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
164158, 163jaoi 853 . . . . . . . . . . . . . . . 16 ((0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
165150, 164sylbi 219 . . . . . . . . . . . . . . 15 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
166 3ianor 1103 . . . . . . . . . . . . . . 15 (¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ↔ (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
167165, 166sylibr 236 . . . . . . . . . . . . . 14 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → ¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))
168167con2i 141 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
169 df-nel 3124 . . . . . . . . . . . . 13 (0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
170168, 169sylibr 236 . . . . . . . . . . . 12 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
171170adantl 484 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
172142, 149, 1713jca 1124 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))
173138, 172jca 514 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
174173ex 415 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
175174ex 415 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
176175adantr 483 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
177176impcom 410 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
178177impcom 410 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
179 lcmf 15977 . . . 4 ((((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
180178, 179syl 17 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
181110, 111, 180mpbir2and 711 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
182181eqcomd 2827 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wnel 3123  wral 3138  cun 3934  wss 3936  {csn 4567   class class class wbr 5066  cfv 6355  (class class class)co 7156  Fincfn 8509  0cc0 10537  cle 10676  cn 11638  0cn0 11898  cz 11982  cdvds 15607   lcm clcm 15932  lcmclcmf 15933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260  df-dvds 15608  df-gcd 15844  df-lcm 15934  df-lcmf 15935
This theorem is referenced by:  lcmfunsnlem2  15984
  Copyright terms: Public domain W3C validator