MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmfunsnlem2lem2 Structured version   Visualization version   GIF version

Theorem lcmfunsnlem2lem2 16673
Description: Lemma 2 for lcmfunsnlem2 16674. (Contributed by AV, 26-Aug-2020.)
Assertion
Ref Expression
lcmfunsnlem2lem2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Distinct variable groups:   𝑦,𝑚,𝑧   𝑘,𝑛,𝑦,𝑧,𝑚

Proof of Theorem lcmfunsnlem2lem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 elun 4163 . . . . . . . . . . 11 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}))
2 elun 4163 . . . . . . . . . . . . 13 (𝑖 ∈ (𝑦 ∪ {𝑧}) ↔ (𝑖𝑦𝑖 ∈ {𝑧}))
3 simp1 1135 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑧 ∈ ℤ)
43adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∈ ℤ)
54adantl 481 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
6 sneq 4641 . . . . . . . . . . . . . . . . . . . 20 (𝑛 = 𝑧 → {𝑛} = {𝑧})
76uneq2d 4178 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑧 → (𝑦 ∪ {𝑛}) = (𝑦 ∪ {𝑧}))
87fveq2d 6911 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → (lcm‘(𝑦 ∪ {𝑛})) = (lcm‘(𝑦 ∪ {𝑧})))
9 oveq2 7439 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑧 → ((lcm𝑦) lcm 𝑛) = ((lcm𝑦) lcm 𝑧))
108, 9eqeq12d 2751 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑧 → ((lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) ↔ (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
1110rspcv 3618 . . . . . . . . . . . . . . . 16 (𝑧 ∈ ℤ → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
125, 11syl 17 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧)))
13 ssel 3989 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ⊆ ℤ → (𝑖𝑦𝑖 ∈ ℤ))
14133ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑖𝑦𝑖 ∈ ℤ))
1514adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖𝑦𝑖 ∈ ℤ))
1615impcom 407 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∈ ℤ)
17 lcmfcl 16662 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
1817nn0zd 12637 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
19183adant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
2019adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (lcm𝑦) ∈ ℤ)
2120adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∈ ℤ)
22 lcmcl 16635 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
233, 22sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℕ0)
2423nn0zd 12637 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑧 lcm 𝑛) ∈ ℤ)
2524adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (𝑧 lcm 𝑛) ∈ ℤ)
26 lcmcl 16635 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
2721, 25, 26syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℕ0)
2827nn0zd 12637 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∈ ℤ)
29 breq1 5151 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 = 𝑖 → (𝑘 ∥ (lcm𝑦) ↔ 𝑖 ∥ (lcm𝑦)))
3029rspcv 3618 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖𝑦 → (∀𝑘𝑦 𝑘 ∥ (lcm𝑦) → 𝑖 ∥ (lcm𝑦)))
31 dvdslcmf 16665 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
32313adant1 1129 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
3332adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ∀𝑘𝑦 𝑘 ∥ (lcm𝑦))
3430, 33impel 505 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (lcm𝑦))
3520, 24jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
3635adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ))
37 dvdslcm 16632 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)) ∧ (𝑧 lcm 𝑛) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛))))
3837simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ (𝑧 lcm 𝑛) ∈ ℤ) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
3936, 38syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (lcm𝑦) ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4016, 21, 28, 34, 39dvdstrd 16329 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
414adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑧 ∈ ℤ)
42 simprr 773 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑛 ∈ ℤ)
43 lcmass 16648 . . . . . . . . . . . . . . . . . . . . 21 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4421, 41, 42, 43syl3anc 1370 . . . . . . . . . . . . . . . . . . . 20 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) = ((lcm𝑦) lcm (𝑧 lcm 𝑛)))
4540, 44breqtrrd 5176 . . . . . . . . . . . . . . . . . . 19 ((𝑖𝑦 ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
4645ex 412 . . . . . . . . . . . . . . . . . 18 (𝑖𝑦 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
47 elsni 4648 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ {𝑧} → 𝑖 = 𝑧)
48173adant1 1129 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℕ0)
4948nn0zd 12637 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm𝑦) ∈ ℤ)
50 lcmcl 16635 . . . . . . . . . . . . . . . . . . . . . . . 24 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5149, 3, 50syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℕ0)
5251nn0zd 12637 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∈ ℤ)
54 lcmcl 16635 . . . . . . . . . . . . . . . . . . . . . . 23 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
5552, 54sylan 580 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℕ0)
5655nn0zd 12637 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∈ ℤ)
5719, 3jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
5857adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ))
59 dvdslcm 16632 . . . . . . . . . . . . . . . . . . . . . . 23 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → ((lcm𝑦) ∥ ((lcm𝑦) lcm 𝑧) ∧ 𝑧 ∥ ((lcm𝑦) lcm 𝑧)))
6059simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (((lcm𝑦) ∈ ℤ ∧ 𝑧 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
6158, 60syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ ((lcm𝑦) lcm 𝑧))
62 dvdslcm 16632 . . . . . . . . . . . . . . . . . . . . . . 23 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ∧ 𝑛 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6362simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 ((((lcm𝑦) lcm 𝑧) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
6452, 63sylan 580 . . . . . . . . . . . . . . . . . . . . 21 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm𝑦) lcm 𝑧) ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
654, 53, 56, 61, 64dvdstrd 16329 . . . . . . . . . . . . . . . . . . . 20 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
66 breq1 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑖 = 𝑧 → (𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛) ↔ 𝑧 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6765, 66imbitrrid 246 . . . . . . . . . . . . . . . . . . 19 (𝑖 = 𝑧 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6847, 67syl 17 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ {𝑧} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
6946, 68jaoi 857 . . . . . . . . . . . . . . . . 17 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7069imp 406 . . . . . . . . . . . . . . . 16 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛))
71 oveq1 7438 . . . . . . . . . . . . . . . . 17 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (((lcm𝑦) lcm 𝑧) lcm 𝑛))
7271breq2d 5160 . . . . . . . . . . . . . . . 16 ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑖 ∥ (((lcm𝑦) lcm 𝑧) lcm 𝑛)))
7370, 72syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → ((lcm‘(𝑦 ∪ {𝑧})) = ((lcm𝑦) lcm 𝑧) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7412, 73syld 47 . . . . . . . . . . . . . 14 (((𝑖𝑦𝑖 ∈ {𝑧}) ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ)) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
7574ex 412 . . . . . . . . . . . . 13 ((𝑖𝑦𝑖 ∈ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
762, 75sylbi 217 . . . . . . . . . . . 12 (𝑖 ∈ (𝑦 ∪ {𝑧}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
77 elsni 4648 . . . . . . . . . . . . 13 (𝑖 ∈ {𝑛} → 𝑖 = 𝑛)
78 simp2 1136 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ⊆ ℤ)
79 snssi 4813 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ ℤ → {𝑧} ⊆ ℤ)
80793ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → {𝑧} ⊆ ℤ)
8178, 80unssd 4202 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
82 simp3 1137 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → 𝑦 ∈ Fin)
83 snfi 9082 . . . . . . . . . . . . . . . . . . . . . 22 {𝑧} ∈ Fin
84 unfi 9210 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
8582, 83, 84sylancl 586 . . . . . . . . . . . . . . . . . . . . 21 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑦 ∪ {𝑧}) ∈ Fin)
86 lcmfcl 16662 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
8781, 85, 86syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ0)
8887nn0zd 12637 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ)
8988anim1i 615 . . . . . . . . . . . . . . . . . 18 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
9089adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
91 dvdslcm 16632 . . . . . . . . . . . . . . . . 17 (((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9290, 91syl 17 . . . . . . . . . . . . . . . 16 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((lcm‘(𝑦 ∪ {𝑧})) ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9392simprd 495 . . . . . . . . . . . . . . 15 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
94 breq1 5151 . . . . . . . . . . . . . . 15 (𝑖 = 𝑛 → (𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ↔ 𝑛 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9593, 94imbitrrid 246 . . . . . . . . . . . . . 14 (𝑖 = 𝑛 → ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
9695expd 415 . . . . . . . . . . . . 13 (𝑖 = 𝑛 → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9777, 96syl 17 . . . . . . . . . . . 12 (𝑖 ∈ {𝑛} → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
9876, 97jaoi 857 . . . . . . . . . . 11 ((𝑖 ∈ (𝑦 ∪ {𝑧}) ∨ 𝑖 ∈ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
991, 98sylbi 217 . . . . . . . . . 10 (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
10099com13 88 . . . . . . . . 9 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
101100expd 415 . . . . . . . 8 (∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
102101adantl 481 . . . . . . 7 ((∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)) → ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))))
103102impcom 407 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))))
104103impcom 407 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
105104adantl 481 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → 𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛)))
106105ralrimiv 3143 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
107 lcmfunsnlem2lem1 16672 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))
10889adantr 480 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ))
10981adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ⊆ ℤ)
11085adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → (𝑦 ∪ {𝑧}) ∈ Fin)
111 df-nel 3045 . . . . . . . . . . . . . . . . . . . 20 (0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦)
112111biimpi 216 . . . . . . . . . . . . . . . . . . 19 (0 ∉ 𝑦 → ¬ 0 ∈ 𝑦)
1131123ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ 𝑦)
114 elsni 4648 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ {𝑧} → 0 = 𝑧)
115114eqcomd 2741 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → 𝑧 = 0)
116115necon3ai 2963 . . . . . . . . . . . . . . . . . . 19 (𝑧 ≠ 0 → ¬ 0 ∈ {𝑧})
1171163ad2ant2 1133 . . . . . . . . . . . . . . . . . 18 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ {𝑧})
118 ioran 985 . . . . . . . . . . . . . . . . . 18 (¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) ↔ (¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ {𝑧}))
119113, 117, 118sylanbrc 583 . . . . . . . . . . . . . . . . 17 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
120 elun 4163 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) ↔ (0 ∈ 𝑦 ∨ 0 ∈ {𝑧}))
121119, 120sylnibr 329 . . . . . . . . . . . . . . . 16 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ (𝑦 ∪ {𝑧}))
122 df-nel 3045 . . . . . . . . . . . . . . . 16 (0 ∉ (𝑦 ∪ {𝑧}) ↔ ¬ 0 ∈ (𝑦 ∪ {𝑧}))
123121, 122sylibr 234 . . . . . . . . . . . . . . 15 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ (𝑦 ∪ {𝑧}))
124 lcmfn0cl 16660 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ⊆ ℤ ∧ (𝑦 ∪ {𝑧}) ∈ Fin ∧ 0 ∉ (𝑦 ∪ {𝑧})) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
125109, 110, 123, 124syl2an3an 1421 . . . . . . . . . . . . . 14 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ∈ ℕ)
126125nnne0d 12314 . . . . . . . . . . . . 13 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (lcm‘(𝑦 ∪ {𝑧})) ≠ 0)
127126neneqd 2943 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ (lcm‘(𝑦 ∪ {𝑧})) = 0)
128 neneq 2944 . . . . . . . . . . . . . 14 (𝑛 ≠ 0 → ¬ 𝑛 = 0)
1291283ad2ant3 1134 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 𝑛 = 0)
130129adantl 481 . . . . . . . . . . . 12 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ 𝑛 = 0)
131 ioran 985 . . . . . . . . . . . 12 (¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0) ↔ (¬ (lcm‘(𝑦 ∪ {𝑧})) = 0 ∧ ¬ 𝑛 = 0))
132127, 130, 131sylanbrc 583 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0))
133 lcmn0cl 16631 . . . . . . . . . . 11 ((((lcm‘(𝑦 ∪ {𝑧})) ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ ((lcm‘(𝑦 ∪ {𝑧})) = 0 ∨ 𝑛 = 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
134108, 132, 133syl2anc 584 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ)
135 snssi 4813 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → {𝑛} ⊆ ℤ)
136135adantl 481 . . . . . . . . . . . . 13 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → {𝑛} ⊆ ℤ)
137109, 136unssd 4202 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
138137adantr 480 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ)
13983, 84mpan2 691 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝑦 ∪ {𝑧}) ∈ Fin)
140 snfi 9082 . . . . . . . . . . . . . . 15 {𝑛} ∈ Fin
141 unfi 9210 . . . . . . . . . . . . . . 15 (((𝑦 ∪ {𝑧}) ∈ Fin ∧ {𝑛} ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
142139, 140, 141sylancl 586 . . . . . . . . . . . . . 14 (𝑦 ∈ Fin → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
1431423ad2ant3 1134 . . . . . . . . . . . . 13 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
144143adantr 480 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
145144adantr 480 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin)
146 elun 4163 . . . . . . . . . . . . . . . 16 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ (0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}))
147 nnel 3054 . . . . . . . . . . . . . . . . . . . . 21 (¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦)
148147biimpri 228 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ 𝑦 → ¬ 0 ∉ 𝑦)
1491483mix1d 1335 . . . . . . . . . . . . . . . . . . 19 (0 ∈ 𝑦 → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
150 nne 2942 . . . . . . . . . . . . . . . . . . . . 21 𝑧 ≠ 0 ↔ 𝑧 = 0)
151115, 150sylibr 234 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑧} → ¬ 𝑧 ≠ 0)
1521513mix2d 1336 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑧} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
153149, 152jaoi 857 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑦 ∨ 0 ∈ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
154120, 153sylbi 217 . . . . . . . . . . . . . . . . 17 (0 ∈ (𝑦 ∪ {𝑧}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
155 elsni 4648 . . . . . . . . . . . . . . . . . . . 20 (0 ∈ {𝑛} → 0 = 𝑛)
156155eqcomd 2741 . . . . . . . . . . . . . . . . . . 19 (0 ∈ {𝑛} → 𝑛 = 0)
157 nne 2942 . . . . . . . . . . . . . . . . . . 19 𝑛 ≠ 0 ↔ 𝑛 = 0)
158156, 157sylibr 234 . . . . . . . . . . . . . . . . . 18 (0 ∈ {𝑛} → ¬ 𝑛 ≠ 0)
1591583mix3d 1337 . . . . . . . . . . . . . . . . 17 (0 ∈ {𝑛} → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
160154, 159jaoi 857 . . . . . . . . . . . . . . . 16 ((0 ∈ (𝑦 ∪ {𝑧}) ∨ 0 ∈ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
161146, 160sylbi 217 . . . . . . . . . . . . . . 15 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
162 3ianor 1106 . . . . . . . . . . . . . . 15 (¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ↔ (¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0))
163161, 162sylibr 234 . . . . . . . . . . . . . 14 (0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) → ¬ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0))
164163con2i 139 . . . . . . . . . . . . 13 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
165 df-nel 3045 . . . . . . . . . . . . 13 (0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ↔ ¬ 0 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
166164, 165sylibr 234 . . . . . . . . . . . 12 ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
167166adantl 481 . . . . . . . . . . 11 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))
168138, 145, 1673jca 1127 . . . . . . . . . 10 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))
169134, 168jca 511 . . . . . . . . 9 ((((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) ∧ (0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0)) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
170169ex 412 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ 𝑛 ∈ ℤ) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
171170ex 412 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
172171adantr 480 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))) → (𝑛 ∈ ℤ → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))))
173172impcom 407 . . . . 5 ((𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛)))) → ((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛})))))
174173impcom 407 . . . 4 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))))
175 lcmf 16667 . . . 4 ((((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∈ ℕ ∧ (((𝑦 ∪ {𝑧}) ∪ {𝑛}) ⊆ ℤ ∧ ((𝑦 ∪ {𝑧}) ∪ {𝑛}) ∈ Fin ∧ 0 ∉ ((𝑦 ∪ {𝑧}) ∪ {𝑛}))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
176174, 175syl 17 . . 3 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) ↔ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖 ∥ ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ∧ ∀𝑘 ∈ ℕ (∀𝑖 ∈ ((𝑦 ∪ {𝑧}) ∪ {𝑛})𝑖𝑘 → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) ≤ 𝑘))))
177106, 107, 176mpbir2and 713 . 2 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛) = (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})))
178177eqcomd 2741 1 (((0 ∉ 𝑦𝑧 ≠ 0 ∧ 𝑛 ≠ 0) ∧ (𝑛 ∈ ℤ ∧ ((𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin) ∧ (∀𝑘 ∈ ℤ (∀𝑚𝑦 𝑚𝑘 → (lcm𝑦) ∥ 𝑘) ∧ ∀𝑛 ∈ ℤ (lcm‘(𝑦 ∪ {𝑛})) = ((lcm𝑦) lcm 𝑛))))) → (lcm‘((𝑦 ∪ {𝑧}) ∪ {𝑛})) = ((lcm‘(𝑦 ∪ {𝑧})) lcm 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wnel 3044  wral 3059  cun 3961  wss 3963  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  cle 11294  cn 12264  0cn0 12524  cz 12611  cdvds 16287   lcm clcm 16622  lcmclcmf 16623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-prod 15937  df-dvds 16288  df-gcd 16529  df-lcm 16624  df-lcmf 16625
This theorem is referenced by:  lcmfunsnlem2  16674
  Copyright terms: Public domain W3C validator