MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng1 Structured version   Visualization version   GIF version

Theorem btwnlng1 28642
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
btwnlng1.1 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
btwnlng1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem btwnlng1
StepHypRef Expression
1 btwnlng1.1 . . 3 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
213mix1d 1335 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Base‘𝐺)
4 btwnlng1.l . . 3 𝐿 = (LineG‘𝐺)
5 btwnlng1.i . . 3 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (𝜑𝑋𝑃)
8 btwnlng1.y . . 3 (𝜑𝑌𝑃)
9 btwnlng1.d . . 3 (𝜑𝑋𝑌)
10 btwnlng1.z . . 3 (𝜑𝑍𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 28576 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
122, 11mpbird 257 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  Basecbs 17245  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-trkg 28476
This theorem is referenced by:  tglnne  28651  tglinerflx1  28656  tglinerflx2  28657  coltr3  28671  mirln2  28700  midexlem  28715  colperpexlem3  28755  mideulem2  28757  opphllem1  28770  opphllem2  28771  opphllem4  28773  hlpasch  28779  lnopp2hpgb  28786  colopp  28792  lmieu  28807  lmimid  28817  lmiisolem  28819  hypcgrlem1  28822  hypcgrlem2  28823  trgcopyeulem  28828
  Copyright terms: Public domain W3C validator