MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng1 Structured version   Visualization version   GIF version

Theorem btwnlng1 28137
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Baseβ€˜πΊ)
btwnlng1.i 𝐼 = (Itvβ€˜πΊ)
btwnlng1.l 𝐿 = (LineGβ€˜πΊ)
btwnlng1.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
btwnlng1.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
btwnlng1.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
btwnlng1.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
btwnlng1.d (πœ‘ β†’ 𝑋 β‰  π‘Œ)
btwnlng1.1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΌπ‘Œ))
Assertion
Ref Expression
btwnlng1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))

Proof of Theorem btwnlng1
StepHypRef Expression
1 btwnlng1.1 . . 3 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΌπ‘Œ))
213mix1d 1334 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Baseβ€˜πΊ)
4 btwnlng1.l . . 3 𝐿 = (LineGβ€˜πΊ)
5 btwnlng1.i . . 3 𝐼 = (Itvβ€˜πΊ)
6 btwnlng1.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
8 btwnlng1.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑃)
9 btwnlng1.d . . 3 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
10 btwnlng1.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 28071 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
122, 11mpbird 256 1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ w3o 1084   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  β€˜cfv 6542  (class class class)co 7411  Basecbs 17148  TarskiGcstrkg 27945  Itvcitv 27951  LineGclng 27952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-trkg 27971
This theorem is referenced by:  tglnne  28146  tglinerflx1  28151  tglinerflx2  28152  coltr3  28166  mirln2  28195  midexlem  28210  colperpexlem3  28250  mideulem2  28252  opphllem1  28265  opphllem2  28266  opphllem4  28268  hlpasch  28274  lnopp2hpgb  28281  colopp  28287  lmieu  28302  lmimid  28312  lmiisolem  28314  hypcgrlem1  28317  hypcgrlem2  28318  trgcopyeulem  28323
  Copyright terms: Public domain W3C validator