![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > btwnlng1 | Structured version Visualization version GIF version |
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.) |
Ref | Expression |
---|---|
btwnlng1.p | β’ π = (BaseβπΊ) |
btwnlng1.i | β’ πΌ = (ItvβπΊ) |
btwnlng1.l | β’ πΏ = (LineGβπΊ) |
btwnlng1.g | β’ (π β πΊ β TarskiG) |
btwnlng1.x | β’ (π β π β π) |
btwnlng1.y | β’ (π β π β π) |
btwnlng1.z | β’ (π β π β π) |
btwnlng1.d | β’ (π β π β π) |
btwnlng1.1 | β’ (π β π β (ππΌπ)) |
Ref | Expression |
---|---|
btwnlng1 | β’ (π β π β (ππΏπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | btwnlng1.1 | . . 3 β’ (π β π β (ππΌπ)) | |
2 | 1 | 3mix1d 1334 | . 2 β’ (π β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ))) |
3 | btwnlng1.p | . . 3 β’ π = (BaseβπΊ) | |
4 | btwnlng1.l | . . 3 β’ πΏ = (LineGβπΊ) | |
5 | btwnlng1.i | . . 3 β’ πΌ = (ItvβπΊ) | |
6 | btwnlng1.g | . . 3 β’ (π β πΊ β TarskiG) | |
7 | btwnlng1.x | . . 3 β’ (π β π β π) | |
8 | btwnlng1.y | . . 3 β’ (π β π β π) | |
9 | btwnlng1.d | . . 3 β’ (π β π β π) | |
10 | btwnlng1.z | . . 3 β’ (π β π β π) | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | tgellng 28071 | . 2 β’ (π β (π β (ππΏπ) β (π β (ππΌπ) β¨ π β (ππΌπ) β¨ π β (ππΌπ)))) |
12 | 2, 11 | mpbird 256 | 1 β’ (π β π β (ππΏπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β¨ w3o 1084 = wceq 1539 β wcel 2104 β wne 2938 βcfv 6542 (class class class)co 7411 Basecbs 17148 TarskiGcstrkg 27945 Itvcitv 27951 LineGclng 27952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-trkg 27971 |
This theorem is referenced by: tglnne 28146 tglinerflx1 28151 tglinerflx2 28152 coltr3 28166 mirln2 28195 midexlem 28210 colperpexlem3 28250 mideulem2 28252 opphllem1 28265 opphllem2 28266 opphllem4 28268 hlpasch 28274 lnopp2hpgb 28281 colopp 28287 lmieu 28302 lmimid 28312 lmiisolem 28314 hypcgrlem1 28317 hypcgrlem2 28318 trgcopyeulem 28323 |
Copyright terms: Public domain | W3C validator |