Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng1 Structured version   Visualization version   GIF version

Theorem btwnlng1 26397
 Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Base‘𝐺)
btwnlng1.i 𝐼 = (Itv‘𝐺)
btwnlng1.l 𝐿 = (LineG‘𝐺)
btwnlng1.g (𝜑𝐺 ∈ TarskiG)
btwnlng1.x (𝜑𝑋𝑃)
btwnlng1.y (𝜑𝑌𝑃)
btwnlng1.z (𝜑𝑍𝑃)
btwnlng1.d (𝜑𝑋𝑌)
btwnlng1.1 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
btwnlng1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))

Proof of Theorem btwnlng1
StepHypRef Expression
1 btwnlng1.1 . . 3 (𝜑𝑍 ∈ (𝑋𝐼𝑌))
213mix1d 1331 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Base‘𝐺)
4 btwnlng1.l . . 3 𝐿 = (LineG‘𝐺)
5 btwnlng1.i . . 3 𝐼 = (Itv‘𝐺)
6 btwnlng1.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (𝜑𝑋𝑃)
8 btwnlng1.y . . 3 (𝜑𝑌𝑃)
9 btwnlng1.d . . 3 (𝜑𝑋𝑌)
10 btwnlng1.z . . 3 (𝜑𝑍𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 26331 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
122, 11mpbird 259 1 (𝜑𝑍 ∈ (𝑋𝐿𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ w3o 1081   = wceq 1531   ∈ wcel 2108   ≠ wne 3014  ‘cfv 6348  (class class class)co 7148  Basecbs 16475  TarskiGcstrkg 26208  Itvcitv 26214  LineGclng 26215 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-trkg 26231 This theorem is referenced by:  tglnne  26406  tglinerflx1  26411  tglinerflx2  26412  coltr3  26426  mirln2  26455  midexlem  26470  colperpexlem3  26510  mideulem2  26512  opphllem1  26525  opphllem2  26526  opphllem4  26528  hlpasch  26534  lnopp2hpgb  26541  colopp  26547  lmieu  26562  lmimid  26572  lmiisolem  26574  hypcgrlem1  26577  hypcgrlem2  26578  trgcopyeulem  26583
 Copyright terms: Public domain W3C validator