MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrreslem2 Structured version   Visualization version   GIF version

Theorem estrreslem2 17043
Description: Lemma 2 for estrres 17045. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
Assertion
Ref Expression
estrreslem2 (𝜑 → (Base‘ndx) ∈ dom 𝐶)

Proof of Theorem estrreslem2
StepHypRef Expression
1 eqidd 2766 . . . 4 (𝜑 → (Base‘ndx) = (Base‘ndx))
213mix1d 1435 . . 3 (𝜑 → ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx)))
3 fvex 6388 . . . 4 (Base‘ndx) ∈ V
4 eltpg 4383 . . . 4 ((Base‘ndx) ∈ V → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
53, 4mp1i 13 . . 3 (𝜑 → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
62, 5mpbird 248 . 2 (𝜑 → (Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
7 df-tp 4339 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩})
87a1i 11 . . . . 5 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
98dmeqd 5494 . . . 4 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
10 dmun 5499 . . . . 5 dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩})
1110a1i 11 . . . 4 (𝜑 → dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}))
12 estrres.b . . . . . 6 (𝜑𝐵𝑉)
13 estrres.h . . . . . 6 (𝜑𝐻𝑋)
14 dmpropg 5792 . . . . . 6 ((𝐵𝑉𝐻𝑋) → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
1512, 13, 14syl2anc 579 . . . . 5 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
16 estrres.x . . . . . 6 (𝜑·𝑌)
17 dmsnopg 5790 . . . . . 6 ( ·𝑌 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1816, 17syl 17 . . . . 5 (𝜑 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1915, 18uneq12d 3930 . . . 4 (𝜑 → (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}) = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
209, 11, 193eqtrd 2803 . . 3 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
21 estrres.c . . . 4 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2221dmeqd 5494 . . 3 (𝜑 → dom 𝐶 = dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
23 df-tp 4339 . . . 4 {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)})
2423a1i 11 . . 3 (𝜑 → {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
2520, 22, 243eqtr4d 2809 . 2 (𝜑 → dom 𝐶 = {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
266, 25eleqtrrd 2847 1 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  w3o 1106   = wceq 1652  wcel 2155  Vcvv 3350  cun 3730  {csn 4334  {cpr 4336  {ctp 4338  cop 4340  dom cdm 5277  cfv 6068  ndxcnx 16127  Basecbs 16130  Hom chom 16225  compcco 16226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-br 4810  df-dm 5287  df-iota 6031  df-fv 6076
This theorem is referenced by:  estrresOLD  17044  estrres  17045
  Copyright terms: Public domain W3C validator