Proof of Theorem estrreslem2
Step | Hyp | Ref
| Expression |
1 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (Base‘ndx) =
(Base‘ndx)) |
2 | 1 | 3mix1d 1334 |
. . 3
⊢ (𝜑 → ((Base‘ndx) =
(Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx)
= (comp‘ndx))) |
3 | | fvex 6769 |
. . . 4
⊢
(Base‘ndx) ∈ V |
4 | | eltpg 4618 |
. . . 4
⊢
((Base‘ndx) ∈ V → ((Base‘ndx) ∈
{(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx)
= (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨
(Base‘ndx) = (comp‘ndx)))) |
5 | 3, 4 | mp1i 13 |
. . 3
⊢ (𝜑 → ((Base‘ndx) ∈
{(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx)
= (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨
(Base‘ndx) = (comp‘ndx)))) |
6 | 2, 5 | mpbird 256 |
. 2
⊢ (𝜑 → (Base‘ndx) ∈
{(Base‘ndx), (Hom ‘ndx), (comp‘ndx)}) |
7 | | df-tp 4563 |
. . . . . 6
⊢
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} = ({〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪
{〈(comp‘ndx), ·
〉}) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉, 〈(Hom
‘ndx), 𝐻〉,
〈(comp‘ndx), · 〉} =
({〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪
{〈(comp‘ndx), ·
〉})) |
9 | 8 | dmeqd 5803 |
. . . 4
⊢ (𝜑 → dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} = dom ({〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪
{〈(comp‘ndx), ·
〉})) |
10 | | dmun 5808 |
. . . . 5
⊢ dom
({〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪
{〈(comp‘ndx), · 〉}) = (dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪ dom
{〈(comp‘ndx), ·
〉}) |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → dom
({〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪
{〈(comp‘ndx), · 〉}) = (dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪ dom
{〈(comp‘ndx), ·
〉})) |
12 | | estrres.b |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ 𝑉) |
13 | | estrres.h |
. . . . . 6
⊢ (𝜑 → 𝐻 ∈ 𝑋) |
14 | | dmpropg 6107 |
. . . . . 6
⊢ ((𝐵 ∈ 𝑉 ∧ 𝐻 ∈ 𝑋) → dom {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉} =
{(Base‘ndx), (Hom ‘ndx)}) |
15 | 12, 13, 14 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} = {(Base‘ndx),
(Hom ‘ndx)}) |
16 | | estrres.x |
. . . . . 6
⊢ (𝜑 → · ∈ 𝑌) |
17 | | dmsnopg 6105 |
. . . . . 6
⊢ ( · ∈
𝑌 → dom
{〈(comp‘ndx), · 〉} =
{(comp‘ndx)}) |
18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝜑 → dom
{〈(comp‘ndx), · 〉} =
{(comp‘ndx)}) |
19 | 15, 18 | uneq12d 4094 |
. . . 4
⊢ (𝜑 → (dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉} ∪ dom
{〈(comp‘ndx), · 〉}) =
({(Base‘ndx), (Hom ‘ndx)} ∪
{(comp‘ndx)})) |
20 | 9, 11, 19 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → dom
{〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx),
·
〉} = ({(Base‘ndx), (Hom ‘ndx)} ∪
{(comp‘ndx)})) |
21 | | estrres.c |
. . . 4
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ·
〉}) |
22 | 21 | dmeqd 5803 |
. . 3
⊢ (𝜑 → dom 𝐶 = dom {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx),
𝐻〉,
〈(comp‘ndx), ·
〉}) |
23 | | df-tp 4563 |
. . . 4
⊢
{(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} =
({(Base‘ndx), (Hom ‘ndx)} ∪
{(comp‘ndx)}) |
24 | 23 | a1i 11 |
. . 3
⊢ (𝜑 → {(Base‘ndx), (Hom
‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪
{(comp‘ndx)})) |
25 | 20, 22, 24 | 3eqtr4d 2788 |
. 2
⊢ (𝜑 → dom 𝐶 = {(Base‘ndx), (Hom ‘ndx),
(comp‘ndx)}) |
26 | 6, 25 | eleqtrrd 2842 |
1
⊢ (𝜑 → (Base‘ndx) ∈
dom 𝐶) |