MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrreslem2 Structured version   Visualization version   GIF version

Theorem estrreslem2 18158
Description: Lemma 2 for estrres 18159. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
Assertion
Ref Expression
estrreslem2 (𝜑 → (Base‘ndx) ∈ dom 𝐶)

Proof of Theorem estrreslem2
StepHypRef Expression
1 eqidd 2735 . . . 4 (𝜑 → (Base‘ndx) = (Base‘ndx))
213mix1d 1336 . . 3 (𝜑 → ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx)))
3 fvex 6900 . . . 4 (Base‘ndx) ∈ V
4 eltpg 4668 . . . 4 ((Base‘ndx) ∈ V → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
53, 4mp1i 13 . . 3 (𝜑 → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
62, 5mpbird 257 . 2 (𝜑 → (Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
7 df-tp 4613 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩})
87a1i 11 . . . . 5 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
98dmeqd 5898 . . . 4 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
10 dmun 5903 . . . . 5 dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩})
1110a1i 11 . . . 4 (𝜑 → dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}))
12 estrres.b . . . . . 6 (𝜑𝐵𝑉)
13 estrres.h . . . . . 6 (𝜑𝐻𝑋)
14 dmpropg 6217 . . . . . 6 ((𝐵𝑉𝐻𝑋) → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
1512, 13, 14syl2anc 584 . . . . 5 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
16 estrres.x . . . . . 6 (𝜑·𝑌)
17 dmsnopg 6215 . . . . . 6 ( ·𝑌 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1816, 17syl 17 . . . . 5 (𝜑 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1915, 18uneq12d 4151 . . . 4 (𝜑 → (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}) = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
209, 11, 193eqtrd 2773 . . 3 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
21 estrres.c . . . 4 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2221dmeqd 5898 . . 3 (𝜑 → dom 𝐶 = dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
23 df-tp 4613 . . . 4 {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)})
2423a1i 11 . . 3 (𝜑 → {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
2520, 22, 243eqtr4d 2779 . 2 (𝜑 → dom 𝐶 = {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
266, 25eleqtrrd 2836 1 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3o 1085   = wceq 1539  wcel 2107  Vcvv 3464  cun 3931  {csn 4608  {cpr 4610  {ctp 4612  cop 4614  dom cdm 5667  cfv 6542  ndxcnx 17213  Basecbs 17230  Hom chom 17288  compcco 17289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-br 5126  df-dm 5677  df-iota 6495  df-fv 6550
This theorem is referenced by:  estrres  18159
  Copyright terms: Public domain W3C validator