MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  estrreslem2 Structured version   Visualization version   GIF version

Theorem estrreslem2 17384
Description: Lemma 2 for estrres 17385. (Contributed by AV, 14-Mar-2020.)
Hypotheses
Ref Expression
estrres.c (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
estrres.b (𝜑𝐵𝑉)
estrres.h (𝜑𝐻𝑋)
estrres.x (𝜑·𝑌)
Assertion
Ref Expression
estrreslem2 (𝜑 → (Base‘ndx) ∈ dom 𝐶)

Proof of Theorem estrreslem2
StepHypRef Expression
1 eqidd 2802 . . . 4 (𝜑 → (Base‘ndx) = (Base‘ndx))
213mix1d 1333 . . 3 (𝜑 → ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx)))
3 fvex 6662 . . . 4 (Base‘ndx) ∈ V
4 eltpg 4586 . . . 4 ((Base‘ndx) ∈ V → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
53, 4mp1i 13 . . 3 (𝜑 → ((Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} ↔ ((Base‘ndx) = (Base‘ndx) ∨ (Base‘ndx) = (Hom ‘ndx) ∨ (Base‘ndx) = (comp‘ndx))))
62, 5mpbird 260 . 2 (𝜑 → (Base‘ndx) ∈ {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
7 df-tp 4533 . . . . . 6 {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩})
87a1i 11 . . . . 5 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
98dmeqd 5742 . . . 4 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}))
10 dmun 5747 . . . . 5 dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩})
1110a1i 11 . . . 4 (𝜑 → dom ({⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ {⟨(comp‘ndx), · ⟩}) = (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}))
12 estrres.b . . . . . 6 (𝜑𝐵𝑉)
13 estrres.h . . . . . 6 (𝜑𝐻𝑋)
14 dmpropg 6043 . . . . . 6 ((𝐵𝑉𝐻𝑋) → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
1512, 13, 14syl2anc 587 . . . . 5 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} = {(Base‘ndx), (Hom ‘ndx)})
16 estrres.x . . . . . 6 (𝜑·𝑌)
17 dmsnopg 6041 . . . . . 6 ( ·𝑌 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1816, 17syl 17 . . . . 5 (𝜑 → dom {⟨(comp‘ndx), · ⟩} = {(comp‘ndx)})
1915, 18uneq12d 4094 . . . 4 (𝜑 → (dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩} ∪ dom {⟨(comp‘ndx), · ⟩}) = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
209, 11, 193eqtrd 2840 . . 3 (𝜑 → dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
21 estrres.c . . . 4 (𝜑𝐶 = {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
2221dmeqd 5742 . . 3 (𝜑 → dom 𝐶 = dom {⟨(Base‘ndx), 𝐵⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
23 df-tp 4533 . . . 4 {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)})
2423a1i 11 . . 3 (𝜑 → {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)} = ({(Base‘ndx), (Hom ‘ndx)} ∪ {(comp‘ndx)}))
2520, 22, 243eqtr4d 2846 . 2 (𝜑 → dom 𝐶 = {(Base‘ndx), (Hom ‘ndx), (comp‘ndx)})
266, 25eleqtrrd 2896 1 (𝜑 → (Base‘ndx) ∈ dom 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3o 1083   = wceq 1538  wcel 2112  Vcvv 3444  cun 3882  {csn 4528  {cpr 4530  {ctp 4532  cop 4534  dom cdm 5523  cfv 6328  ndxcnx 16476  Basecbs 16479  Hom chom 16572  compcco 16573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-br 5034  df-dm 5533  df-iota 6287  df-fv 6336
This theorem is referenced by:  estrres  17385
  Copyright terms: Public domain W3C validator