MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dom3el3dif Structured version   Visualization version   GIF version

Theorem f1dom3el3dif 6750
Description: The range of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019.)
Hypotheses
Ref Expression
f1dom3fv3dif.v (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
f1dom3fv3dif.n (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
f1dom3fv3dif.f (𝜑𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅)
Assertion
Ref Expression
f1dom3el3dif (𝜑 → ∃𝑥𝑅𝑦𝑅𝑧𝑅 (𝑥𝑦𝑥𝑧𝑦𝑧))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem f1dom3el3dif
StepHypRef Expression
1 f1dom3fv3dif.f . . 3 (𝜑𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅)
2 f1f 6316 . . . 4 (𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅)
3 simpr 473 . . . . . . 7 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → 𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅)
4 eqidd 2807 . . . . . . . . . 10 (𝜑𝐴 = 𝐴)
543mix1d 1428 . . . . . . . . 9 (𝜑 → (𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶))
6 f1dom3fv3dif.v . . . . . . . . . . 11 (𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))
76simp1d 1165 . . . . . . . . . 10 (𝜑𝐴𝑋)
8 eltpg 4419 . . . . . . . . . 10 (𝐴𝑋 → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶)))
97, 8syl 17 . . . . . . . . 9 (𝜑 → (𝐴 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐴 = 𝐴𝐴 = 𝐵𝐴 = 𝐶)))
105, 9mpbird 248 . . . . . . . 8 (𝜑𝐴 ∈ {𝐴, 𝐵, 𝐶})
1110adantr 468 . . . . . . 7 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → 𝐴 ∈ {𝐴, 𝐵, 𝐶})
123, 11ffvelrnd 6582 . . . . . 6 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → (𝐹𝐴) ∈ 𝑅)
13 eqidd 2807 . . . . . . . . . 10 (𝜑𝐵 = 𝐵)
14133mix2d 1429 . . . . . . . . 9 (𝜑 → (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶))
156simp2d 1166 . . . . . . . . . 10 (𝜑𝐵𝑌)
16 eltpg 4419 . . . . . . . . . 10 (𝐵𝑌 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
1715, 16syl 17 . . . . . . . . 9 (𝜑 → (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)))
1814, 17mpbird 248 . . . . . . . 8 (𝜑𝐵 ∈ {𝐴, 𝐵, 𝐶})
1918adantr 468 . . . . . . 7 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → 𝐵 ∈ {𝐴, 𝐵, 𝐶})
203, 19ffvelrnd 6582 . . . . . 6 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → (𝐹𝐵) ∈ 𝑅)
216simp3d 1167 . . . . . . . . 9 (𝜑𝐶𝑍)
22 tpid3g 4496 . . . . . . . . 9 (𝐶𝑍𝐶 ∈ {𝐴, 𝐵, 𝐶})
2321, 22syl 17 . . . . . . . 8 (𝜑𝐶 ∈ {𝐴, 𝐵, 𝐶})
2423adantr 468 . . . . . . 7 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
253, 24ffvelrnd 6582 . . . . . 6 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → (𝐹𝐶) ∈ 𝑅)
2612, 20, 253jca 1151 . . . . 5 ((𝜑𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅) → ((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅 ∧ (𝐹𝐶) ∈ 𝑅))
2726expcom 400 . . . 4 (𝐹:{𝐴, 𝐵, 𝐶}⟶𝑅 → (𝜑 → ((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅 ∧ (𝐹𝐶) ∈ 𝑅)))
282, 27syl 17 . . 3 (𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅 → (𝜑 → ((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅 ∧ (𝐹𝐶) ∈ 𝑅)))
291, 28mpcom 38 . 2 (𝜑 → ((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅 ∧ (𝐹𝐶) ∈ 𝑅))
30 f1dom3fv3dif.n . . 3 (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))
316, 30, 1f1dom3fv3dif 6749 . 2 (𝜑 → ((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ (𝐹𝐶) ∧ (𝐹𝐵) ≠ (𝐹𝐶)))
32 neeq1 3040 . . . 4 (𝑥 = (𝐹𝐴) → (𝑥𝑦 ↔ (𝐹𝐴) ≠ 𝑦))
33 neeq1 3040 . . . 4 (𝑥 = (𝐹𝐴) → (𝑥𝑧 ↔ (𝐹𝐴) ≠ 𝑧))
3432, 333anbi12d 1554 . . 3 (𝑥 = (𝐹𝐴) → ((𝑥𝑦𝑥𝑧𝑦𝑧) ↔ ((𝐹𝐴) ≠ 𝑦 ∧ (𝐹𝐴) ≠ 𝑧𝑦𝑧)))
35 neeq2 3041 . . . 4 (𝑦 = (𝐹𝐵) → ((𝐹𝐴) ≠ 𝑦 ↔ (𝐹𝐴) ≠ (𝐹𝐵)))
36 neeq1 3040 . . . 4 (𝑦 = (𝐹𝐵) → (𝑦𝑧 ↔ (𝐹𝐵) ≠ 𝑧))
3735, 363anbi13d 1555 . . 3 (𝑦 = (𝐹𝐵) → (((𝐹𝐴) ≠ 𝑦 ∧ (𝐹𝐴) ≠ 𝑧𝑦𝑧) ↔ ((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ 𝑧 ∧ (𝐹𝐵) ≠ 𝑧)))
38 neeq2 3041 . . . 4 (𝑧 = (𝐹𝐶) → ((𝐹𝐴) ≠ 𝑧 ↔ (𝐹𝐴) ≠ (𝐹𝐶)))
39 neeq2 3041 . . . 4 (𝑧 = (𝐹𝐶) → ((𝐹𝐵) ≠ 𝑧 ↔ (𝐹𝐵) ≠ (𝐹𝐶)))
4038, 393anbi23d 1556 . . 3 (𝑧 = (𝐹𝐶) → (((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ 𝑧 ∧ (𝐹𝐵) ≠ 𝑧) ↔ ((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ (𝐹𝐶) ∧ (𝐹𝐵) ≠ (𝐹𝐶))))
4134, 37, 40rspc3ev 3519 . 2 ((((𝐹𝐴) ∈ 𝑅 ∧ (𝐹𝐵) ∈ 𝑅 ∧ (𝐹𝐶) ∈ 𝑅) ∧ ((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ (𝐹𝐶) ∧ (𝐹𝐵) ≠ (𝐹𝐶))) → ∃𝑥𝑅𝑦𝑅𝑧𝑅 (𝑥𝑦𝑥𝑧𝑦𝑧))
4229, 31, 41syl2anc 575 1 (𝜑 → ∃𝑥𝑅𝑦𝑅𝑧𝑅 (𝑥𝑦𝑥𝑧𝑦𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3o 1099  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097  {ctp 4374  wf 6097  1-1wf1 6098  cfv 6101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pr 5096
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fv 6109
This theorem is referenced by:  hashge3el3dif  13485
  Copyright terms: Public domain W3C validator