MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlln Structured version   Visualization version   GIF version

Theorem hlln 26395
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlln.l 𝐿 = (LineG‘𝐺)
hlln.2 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlln (𝜑𝐴 ∈ (𝐵𝐿𝐶))

Proof of Theorem hlln
StepHypRef Expression
1 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2823 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
76adantr 483 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
8 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 483 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
10 ishlg.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 483 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
12 simpr 487 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 26276 . . . 4 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
14133mix1d 1332 . . 3 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
154adantr 483 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
166adantr 483 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
1710adantr 483 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
188adantr 483 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
19 simpr 487 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
201, 2, 3, 15, 16, 17, 18, 19tgbtwncom 26276 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
21203mix2d 1333 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
22 hlln.2 . . . . 5 (𝜑𝐴(𝐾𝐶)𝐵)
23 ishlg.k . . . . . 6 𝐾 = (hlG‘𝐺)
241, 3, 23, 8, 10, 6, 4ishlg 26390 . . . . 5 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
2522, 24mpbid 234 . . . 4 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2625simp3d 1140 . . 3 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
2714, 21, 26mpjaodan 955 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
28 hlln.l . . 3 𝐿 = (LineG‘𝐺)
2925simp2d 1139 . . 3 (𝜑𝐵𝐶)
301, 28, 3, 4, 10, 6, 29, 8tgellng 26341 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
3127, 30mpbird 259 1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  distcds 16576  TarskiGcstrkg 26218  Itvcitv 26224  LineGclng 26225  hlGchlg 26388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-trkgc 26236  df-trkgb 26237  df-trkgcb 26238  df-trkg 26241  df-hlg 26389
This theorem is referenced by:  hlperpnel  26513  opphllem4  26538  opphl  26542  hlpasch  26544  colhp  26558  hphl  26559  trgcopy  26592  cgracgr  26606  cgraswap  26608  acopy  26621  acopyeu  26622  tgasa1  26646
  Copyright terms: Public domain W3C validator