![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlln | Structured version Visualization version GIF version |
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlln.l | ⊢ 𝐿 = (LineG‘𝐺) |
hlln.2 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlln | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2726 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishlg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | ishlg.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶 ∈ 𝑃) |
8 | ishlg.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ 𝑃) |
10 | ishlg.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵 ∈ 𝑃) |
12 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵)) | |
13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgbtwncom 28410 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
14 | 13 | 3mix1d 1333 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
15 | 4 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG) |
16 | 6 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶 ∈ 𝑃) |
17 | 10 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ 𝑃) |
18 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ 𝑃) |
19 | simpr 483 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴)) | |
20 | 1, 2, 3, 15, 16, 17, 18, 19 | tgbtwncom 28410 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
21 | 20 | 3mix2d 1334 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
22 | hlln.2 | . . . . 5 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
23 | ishlg.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
24 | 1, 3, 23, 8, 10, 6, 4 | ishlg 28524 | . . . . 5 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
26 | 25 | simp3d 1141 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) |
27 | 14, 21, 26 | mpjaodan 956 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
28 | hlln.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
29 | 25 | simp2d 1140 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
30 | 1, 28, 3, 4, 10, 6, 29, 8 | tgellng 28475 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))) |
31 | 27, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 ∨ w3o 1083 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5144 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 distcds 17268 TarskiGcstrkg 28349 Itvcitv 28355 LineGclng 28356 hlGchlg 28522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7417 df-oprab 7418 df-mpo 7419 df-trkgc 28370 df-trkgb 28371 df-trkgcb 28372 df-trkg 28375 df-hlg 28523 |
This theorem is referenced by: hlperpnel 28647 opphllem4 28672 opphl 28676 hlpasch 28678 colhp 28692 hphl 28693 trgcopy 28726 cgracgr 28740 cgraswap 28742 acopy 28755 acopyeu 28756 tgasa1 28780 |
Copyright terms: Public domain | W3C validator |