MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlln Structured version   Visualization version   GIF version

Theorem hlln 25958
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlln.l 𝐿 = (LineG‘𝐺)
hlln.2 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlln (𝜑𝐴 ∈ (𝐵𝐿𝐶))

Proof of Theorem hlln
StepHypRef Expression
1 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2777 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 474 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
76adantr 474 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
8 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 474 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
10 ishlg.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 474 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
12 simpr 479 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 25839 . . . 4 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
14133mix1d 1392 . . 3 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
154adantr 474 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
166adantr 474 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
1710adantr 474 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
188adantr 474 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
19 simpr 479 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
201, 2, 3, 15, 16, 17, 18, 19tgbtwncom 25839 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
21203mix2d 1393 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
22 hlln.2 . . . . 5 (𝜑𝐴(𝐾𝐶)𝐵)
23 ishlg.k . . . . . 6 𝐾 = (hlG‘𝐺)
241, 3, 23, 8, 10, 6, 4ishlg 25953 . . . . 5 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
2522, 24mpbid 224 . . . 4 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2625simp3d 1135 . . 3 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
2714, 21, 26mpjaodan 944 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
28 hlln.l . . 3 𝐿 = (LineG‘𝐺)
2925simp2d 1134 . . 3 (𝜑𝐵𝐶)
301, 28, 3, 4, 10, 6, 29, 8tgellng 25904 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
3127, 30mpbird 249 1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836  w3o 1070  w3a 1071   = wceq 1601  wcel 2106  wne 2968   class class class wbr 4886  cfv 6135  (class class class)co 6922  Basecbs 16255  distcds 16347  TarskiGcstrkg 25781  Itvcitv 25787  LineGclng 25788  hlGchlg 25951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-trkgc 25799  df-trkgb 25800  df-trkgcb 25801  df-trkg 25804  df-hlg 25952
This theorem is referenced by:  hlperpnel  26073  opphllem4  26098  opphl  26102  hlpasch  26104  colhp  26118  hphl  26119  trgcopy  26152  cgracgr  26166  cgraswap  26168  acopy  26182  acopyeu  26183  tgasa1  26207
  Copyright terms: Public domain W3C validator