MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlln Structured version   Visualization version   GIF version

Theorem hlln 26401
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlln.l 𝐿 = (LineG‘𝐺)
hlln.2 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlln (𝜑𝐴 ∈ (𝐵𝐿𝐶))

Proof of Theorem hlln
StepHypRef Expression
1 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2798 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
76adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
8 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
10 ishlg.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 484 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
12 simpr 488 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 26282 . . . 4 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
14133mix1d 1333 . . 3 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
154adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
166adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
1710adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
188adantr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
19 simpr 488 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
201, 2, 3, 15, 16, 17, 18, 19tgbtwncom 26282 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
21203mix2d 1334 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
22 hlln.2 . . . . 5 (𝜑𝐴(𝐾𝐶)𝐵)
23 ishlg.k . . . . . 6 𝐾 = (hlG‘𝐺)
241, 3, 23, 8, 10, 6, 4ishlg 26396 . . . . 5 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
2522, 24mpbid 235 . . . 4 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2625simp3d 1141 . . 3 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
2714, 21, 26mpjaodan 956 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
28 hlln.l . . 3 𝐿 = (LineG‘𝐺)
2925simp2d 1140 . . 3 (𝜑𝐵𝐶)
301, 28, 3, 4, 10, 6, 29, 8tgellng 26347 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
3127, 30mpbird 260 1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3o 1083  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  hlGchlg 26394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-hlg 26395
This theorem is referenced by:  hlperpnel  26519  opphllem4  26544  opphl  26548  hlpasch  26550  colhp  26564  hphl  26565  trgcopy  26598  cgracgr  26612  cgraswap  26614  acopy  26627  acopyeu  26628  tgasa1  26652
  Copyright terms: Public domain W3C validator