Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlln | Structured version Visualization version GIF version |
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
Ref | Expression |
---|---|
ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
hlln.l | ⊢ 𝐿 = (LineG‘𝐺) |
hlln.2 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
Ref | Expression |
---|---|
hlln | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishlg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2738 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishlg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | hlln.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG) |
6 | ishlg.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶 ∈ 𝑃) |
8 | ishlg.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ 𝑃) |
10 | ishlg.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵 ∈ 𝑃) |
12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵)) | |
13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgbtwncom 26753 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
14 | 13 | 3mix1d 1334 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
15 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG) |
16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶 ∈ 𝑃) |
17 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ 𝑃) |
18 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ 𝑃) |
19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴)) | |
20 | 1, 2, 3, 15, 16, 17, 18, 19 | tgbtwncom 26753 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
21 | 20 | 3mix2d 1335 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
22 | hlln.2 | . . . . 5 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
23 | ishlg.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
24 | 1, 3, 23, 8, 10, 6, 4 | ishlg 26867 | . . . . 5 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
25 | 22, 24 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
26 | 25 | simp3d 1142 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) |
27 | 14, 21, 26 | mpjaodan 955 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
28 | hlln.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
29 | 25 | simp2d 1141 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
30 | 1, 28, 3, 4, 10, 6, 29, 8 | tgellng 26818 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))) |
31 | 27, 30 | mpbird 256 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 ∨ w3o 1084 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TarskiGcstrkg 26693 Itvcitv 26699 LineGclng 26700 hlGchlg 26865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-trkgc 26713 df-trkgb 26714 df-trkgcb 26715 df-trkg 26718 df-hlg 26866 |
This theorem is referenced by: hlperpnel 26990 opphllem4 27015 opphl 27019 hlpasch 27021 colhp 27035 hphl 27036 trgcopy 27069 cgracgr 27083 cgraswap 27085 acopy 27098 acopyeu 27099 tgasa1 27123 |
Copyright terms: Public domain | W3C validator |