MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlln Structured version   Visualization version   GIF version

Theorem hlln 28629
Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.)
Hypotheses
Ref Expression
ishlg.p 𝑃 = (Base‘𝐺)
ishlg.i 𝐼 = (Itv‘𝐺)
ishlg.k 𝐾 = (hlG‘𝐺)
ishlg.a (𝜑𝐴𝑃)
ishlg.b (𝜑𝐵𝑃)
ishlg.c (𝜑𝐶𝑃)
hlln.1 (𝜑𝐺 ∈ TarskiG)
hlln.l 𝐿 = (LineG‘𝐺)
hlln.2 (𝜑𝐴(𝐾𝐶)𝐵)
Assertion
Ref Expression
hlln (𝜑𝐴 ∈ (𝐵𝐿𝐶))

Proof of Theorem hlln
StepHypRef Expression
1 ishlg.p . . . . 5 𝑃 = (Base‘𝐺)
2 eqid 2734 . . . . 5 (dist‘𝐺) = (dist‘𝐺)
3 ishlg.i . . . . 5 𝐼 = (Itv‘𝐺)
4 hlln.1 . . . . . 6 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG)
6 ishlg.c . . . . . 6 (𝜑𝐶𝑃)
76adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶𝑃)
8 ishlg.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴𝑃)
10 ishlg.b . . . . . 6 (𝜑𝐵𝑃)
1110adantr 480 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵𝑃)
12 simpr 484 . . . . 5 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵))
131, 2, 3, 5, 7, 9, 11, 12tgbtwncom 28510 . . . 4 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶))
14133mix1d 1335 . . 3 ((𝜑𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
154adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG)
166adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶𝑃)
1710adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵𝑃)
188adantr 480 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴𝑃)
19 simpr 484 . . . . 5 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴))
201, 2, 3, 15, 16, 17, 18, 19tgbtwncom 28510 . . . 4 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶))
21203mix2d 1336 . . 3 ((𝜑𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
22 hlln.2 . . . . 5 (𝜑𝐴(𝐾𝐶)𝐵)
23 ishlg.k . . . . . 6 𝐾 = (hlG‘𝐺)
241, 3, 23, 8, 10, 6, 4ishlg 28624 . . . . 5 (𝜑 → (𝐴(𝐾𝐶)𝐵 ↔ (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))))
2522, 24mpbid 232 . . . 4 (𝜑 → (𝐴𝐶𝐵𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))
2625simp3d 1143 . . 3 (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))
2714, 21, 26mpjaodan 960 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))
28 hlln.l . . 3 𝐿 = (LineG‘𝐺)
2925simp2d 1142 . . 3 (𝜑𝐵𝐶)
301, 28, 3, 4, 10, 6, 29, 8tgellng 28575 . 2 (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))))
3127, 30mpbird 257 1 (𝜑𝐴 ∈ (𝐵𝐿𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1536  wcel 2105  wne 2937   class class class wbr 5147  cfv 6562  (class class class)co 7430  Basecbs 17244  distcds 17306  TarskiGcstrkg 28449  Itvcitv 28455  LineGclng 28456  hlGchlg 28622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-trkgc 28470  df-trkgb 28471  df-trkgcb 28472  df-trkg 28475  df-hlg 28623
This theorem is referenced by:  hlperpnel  28747  opphllem4  28772  opphl  28776  hlpasch  28778  colhp  28792  hphl  28793  trgcopy  28826  cgracgr  28840  cgraswap  28842  acopy  28855  acopyeu  28856  tgasa1  28880
  Copyright terms: Public domain W3C validator