| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlln | Structured version Visualization version GIF version | ||
| Description: The half-line relation implies colinearity, part of Theorem 6.4 of [Schwabhauser] p. 44. (Contributed by Thierry Arnoux, 22-Feb-2020.) |
| Ref | Expression |
|---|---|
| ishlg.p | ⊢ 𝑃 = (Base‘𝐺) |
| ishlg.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ishlg.k | ⊢ 𝐾 = (hlG‘𝐺) |
| ishlg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| ishlg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| ishlg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| hlln.1 | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| hlln.l | ⊢ 𝐿 = (LineG‘𝐺) |
| hlln.2 | ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) |
| Ref | Expression |
|---|---|
| hlln | ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishlg.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 3 | ishlg.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | hlln.1 | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐺 ∈ TarskiG) |
| 6 | ishlg.c | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐶 ∈ 𝑃) |
| 8 | ishlg.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ 𝑃) |
| 10 | ishlg.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐵 ∈ 𝑃) |
| 12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐶𝐼𝐵)) | |
| 13 | 1, 2, 3, 5, 7, 9, 11, 12 | tgbtwncom 28433 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → 𝐴 ∈ (𝐵𝐼𝐶)) |
| 14 | 13 | 3mix1d 1337 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ (𝐶𝐼𝐵)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
| 15 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐺 ∈ TarskiG) |
| 16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐶 ∈ 𝑃) |
| 17 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ 𝑃) |
| 18 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐴 ∈ 𝑃) |
| 19 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐶𝐼𝐴)) | |
| 20 | 1, 2, 3, 15, 16, 17, 18, 19 | tgbtwncom 28433 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → 𝐵 ∈ (𝐴𝐼𝐶)) |
| 21 | 20 | 3mix2d 1338 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (𝐶𝐼𝐴)) → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
| 22 | hlln.2 | . . . . 5 ⊢ (𝜑 → 𝐴(𝐾‘𝐶)𝐵) | |
| 23 | ishlg.k | . . . . . 6 ⊢ 𝐾 = (hlG‘𝐺) | |
| 24 | 1, 3, 23, 8, 10, 6, 4 | ishlg 28547 | . . . . 5 ⊢ (𝜑 → (𝐴(𝐾‘𝐶)𝐵 ↔ (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))))) |
| 25 | 22, 24 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ∧ (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴)))) |
| 26 | 25 | simp3d 1144 | . . 3 ⊢ (𝜑 → (𝐴 ∈ (𝐶𝐼𝐵) ∨ 𝐵 ∈ (𝐶𝐼𝐴))) |
| 27 | 14, 21, 26 | mpjaodan 960 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴))) |
| 28 | hlln.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
| 29 | 25 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 30 | 1, 28, 3, 4, 10, 6, 29, 8 | tgellng 28498 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐵𝐿𝐶) ↔ (𝐴 ∈ (𝐵𝐼𝐶) ∨ 𝐵 ∈ (𝐴𝐼𝐶) ∨ 𝐶 ∈ (𝐵𝐼𝐴)))) |
| 31 | 27, 30 | mpbird 257 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐵𝐿𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 distcds 17170 TarskiGcstrkg 28372 Itvcitv 28378 LineGclng 28379 hlGchlg 28545 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-trkgc 28393 df-trkgb 28394 df-trkgcb 28395 df-trkg 28398 df-hlg 28546 |
| This theorem is referenced by: hlperpnel 28670 opphllem4 28695 opphl 28699 hlpasch 28701 colhp 28715 hphl 28716 trgcopy 28749 cgracgr 28763 cgraswap 28765 acopy 28778 acopyeu 28779 tgasa1 28803 |
| Copyright terms: Public domain | W3C validator |