Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2v Structured version   Visualization version   GIF version

Theorem dfxlim2v 43388
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2v.1 (𝜑𝑀 ∈ ℤ)
dfxlim2v.2 𝑍 = (ℤ𝑀)
dfxlim2v.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2v (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem dfxlim2v
StepHypRef Expression
1 simplr 766 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
2 dfxlim2v.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
32adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
4 dfxlim2v.2 . . . . . . 7 𝑍 = (ℤ𝑀)
5 dfxlim2v.3 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
7 simpr 485 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
83, 4, 6, 7xlimclim2 43381 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
98adantlr 712 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
101, 9mpbid 231 . . . 4 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹𝐴)
11103mix1d 1335 . . 3 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
12 simpr 485 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐴 = -∞)
13 simpl 483 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*𝐴)
14 simpr 485 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐴 = -∞)
1513, 14breqtrd 5100 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*-∞)
1615adantll 711 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐹~~>*-∞)
17 nfcv 2907 . . . . . . . . 9 𝑘𝐹
1817, 2, 4, 5xlimmnf 43382 . . . . . . . 8 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
1918ad2antrr 723 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2016, 19mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
21 3mix2 1330 . . . . . 6 ((𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2212, 20, 21syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2322adantlr 712 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
24 simpll 764 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝜑𝐹~~>*𝐴))
25 xlimcl 43363 . . . . . . 7 (𝐹~~>*𝐴𝐴 ∈ ℝ*)
2625ad3antlr 728 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
27 simplr 766 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 ∈ ℝ)
28 neqne 2951 . . . . . . 7 𝐴 = -∞ → 𝐴 ≠ -∞)
2928adantl 482 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
3026, 27, 29xrnmnfpnf 42633 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 = +∞)
31 simpr 485 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32 simpl 483 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*𝐴)
33 simpr 485 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐴 = +∞)
3432, 33breqtrd 5100 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*+∞)
3534adantll 711 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐹~~>*+∞)
3617, 2, 4, 5xlimpnf 43383 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3736ad2antrr 723 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3835, 37mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
39 3mix3 1331 . . . . . 6 ((𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4031, 38, 39syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4124, 30, 40syl2anc 584 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4223, 41pm2.61dan 810 . . 3 (((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4311, 42pm2.61dan 810 . 2 ((𝜑𝐹~~>*𝐴) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
442adantr 481 . . . 4 ((𝜑𝐹𝐴) → 𝑀 ∈ ℤ)
455adantr 481 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℝ*)
46 simpr 485 . . . 4 ((𝜑𝐹𝐴) → 𝐹𝐴)
4744, 4, 45, 46climxlim2 43387 . . 3 ((𝜑𝐹𝐴) → 𝐹~~>*𝐴)
4818biimpar 478 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
4948adantrl 713 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*-∞)
50 simprl 768 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐴 = -∞)
5149, 50breqtrrd 5102 . . 3 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*𝐴)
5236biimpar 478 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
5352adantrl 713 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*+∞)
54 simprl 768 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐴 = +∞)
5553, 54breqtrrd 5102 . . 3 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*𝐴)
5647, 51, 553jaodan 1429 . 2 ((𝜑 ∧ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))) → 𝐹~~>*𝐴)
5743, 56impbida 798 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  cle 11010  cz 12319  cuz 12582  cli 15193  ~~>*clsxlim 43359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-ordt 17212  df-ps 18284  df-tsr 18285  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-lm 22380  df-xms 23473  df-ms 23474  df-xlim 43360
This theorem is referenced by:  dfxlim2  43389
  Copyright terms: Public domain W3C validator