Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2v Structured version   Visualization version   GIF version

Theorem dfxlim2v 44550
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2v.1 (𝜑𝑀 ∈ ℤ)
dfxlim2v.2 𝑍 = (ℤ𝑀)
dfxlim2v.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2v (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem dfxlim2v
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
2 dfxlim2v.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
32adantr 482 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
4 dfxlim2v.2 . . . . . . 7 𝑍 = (ℤ𝑀)
5 dfxlim2v.3 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 482 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
7 simpr 486 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
83, 4, 6, 7xlimclim2 44543 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
98adantlr 714 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
101, 9mpbid 231 . . . 4 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹𝐴)
11103mix1d 1337 . . 3 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
12 simpr 486 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐴 = -∞)
13 simpl 484 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*𝐴)
14 simpr 486 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐴 = -∞)
1513, 14breqtrd 5174 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*-∞)
1615adantll 713 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐹~~>*-∞)
17 nfcv 2904 . . . . . . . . 9 𝑘𝐹
1817, 2, 4, 5xlimmnf 44544 . . . . . . . 8 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
1918ad2antrr 725 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2016, 19mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
21 3mix2 1332 . . . . . 6 ((𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2212, 20, 21syl2anc 585 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2322adantlr 714 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
24 simpll 766 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝜑𝐹~~>*𝐴))
25 xlimcl 44525 . . . . . . 7 (𝐹~~>*𝐴𝐴 ∈ ℝ*)
2625ad3antlr 730 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
27 simplr 768 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 ∈ ℝ)
28 neqne 2949 . . . . . . 7 𝐴 = -∞ → 𝐴 ≠ -∞)
2928adantl 483 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
3026, 27, 29xrnmnfpnf 43758 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 = +∞)
31 simpr 486 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32 simpl 484 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*𝐴)
33 simpr 486 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐴 = +∞)
3432, 33breqtrd 5174 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*+∞)
3534adantll 713 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐹~~>*+∞)
3617, 2, 4, 5xlimpnf 44545 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3736ad2antrr 725 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3835, 37mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
39 3mix3 1333 . . . . . 6 ((𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4031, 38, 39syl2anc 585 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4124, 30, 40syl2anc 585 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4223, 41pm2.61dan 812 . . 3 (((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4311, 42pm2.61dan 812 . 2 ((𝜑𝐹~~>*𝐴) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
442adantr 482 . . . 4 ((𝜑𝐹𝐴) → 𝑀 ∈ ℤ)
455adantr 482 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℝ*)
46 simpr 486 . . . 4 ((𝜑𝐹𝐴) → 𝐹𝐴)
4744, 4, 45, 46climxlim2 44549 . . 3 ((𝜑𝐹𝐴) → 𝐹~~>*𝐴)
4818biimpar 479 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
4948adantrl 715 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*-∞)
50 simprl 770 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐴 = -∞)
5149, 50breqtrrd 5176 . . 3 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*𝐴)
5236biimpar 479 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
5352adantrl 715 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*+∞)
54 simprl 770 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐴 = +∞)
5553, 54breqtrrd 5176 . . 3 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*𝐴)
5647, 51, 553jaodan 1431 . 2 ((𝜑 ∧ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))) → 𝐹~~>*𝐴)
5743, 56impbida 800 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071   class class class wbr 5148  wf 6537  cfv 6541  cr 11106  +∞cpnf 11242  -∞cmnf 11243  *cxr 11244  cle 11246  cz 12555  cuz 12819  cli 15425  ~~>*clsxlim 44521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fi 9403  df-sup 9434  df-inf 9435  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fl 13754  df-seq 13964  df-exp 14025  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-rlim 15430  df-struct 17077  df-slot 17112  df-ndx 17124  df-base 17142  df-plusg 17207  df-mulr 17208  df-starv 17209  df-tset 17213  df-ple 17214  df-ds 17216  df-unif 17217  df-rest 17365  df-topn 17366  df-topgen 17386  df-ordt 17444  df-ps 18516  df-tsr 18517  df-psmet 20929  df-xmet 20930  df-met 20931  df-bl 20932  df-mopn 20933  df-cnfld 20938  df-top 22388  df-topon 22405  df-topsp 22427  df-bases 22441  df-lm 22725  df-xms 23818  df-ms 23819  df-xlim 44522
This theorem is referenced by:  dfxlim2  44551
  Copyright terms: Public domain W3C validator