Proof of Theorem dfxlim2v
Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴) |
2 | | dfxlim2v.1 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | 2 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑀 ∈ ℤ) |
4 | | dfxlim2v.2 |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑀) |
5 | | dfxlim2v.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
6 | 5 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
7 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) |
8 | 3, 4, 6, 7 | xlimclim2 43381 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
9 | 8 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴 ↔ 𝐹 ⇝ 𝐴)) |
10 | 1, 9 | mpbid 231 |
. . . 4
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹 ⇝ 𝐴) |
11 | 10 | 3mix1d 1335 |
. . 3
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
12 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐴 = -∞) |
13 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = -∞) → 𝐹~~>*𝐴) |
14 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = -∞) → 𝐴 = -∞) |
15 | 13, 14 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = -∞) → 𝐹~~>*-∞) |
16 | 15 | adantll 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐹~~>*-∞) |
17 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐹 |
18 | 17, 2, 4, 5 | xlimmnf 43382 |
. . . . . . . 8
⊢ (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
19 | 18 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) |
20 | 16, 19 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = -∞) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) |
21 | | 3mix2 1330 |
. . . . . 6
⊢ ((𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
22 | 12, 20, 21 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
23 | 22 | adantlr 712 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
24 | | simpll 764 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝜑 ∧ 𝐹~~>*𝐴)) |
25 | | xlimcl 43363 |
. . . . . . 7
⊢ (𝐹~~>*𝐴 → 𝐴 ∈
ℝ*) |
26 | 25 | ad3antlr 728 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈
ℝ*) |
27 | | simplr 766 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 ∈
ℝ) |
28 | | neqne 2951 |
. . . . . . 7
⊢ (¬
𝐴 = -∞ → 𝐴 ≠ -∞) |
29 | 28 | adantl 482 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞) |
30 | 26, 27, 29 | xrnmnfpnf 42633 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 = +∞) |
31 | | simpr 485 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐴 = +∞) |
32 | | simpl 483 |
. . . . . . . . 9
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = +∞) → 𝐹~~>*𝐴) |
33 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = +∞) → 𝐴 = +∞) |
34 | 32, 33 | breqtrd 5100 |
. . . . . . . 8
⊢ ((𝐹~~>*𝐴 ∧ 𝐴 = +∞) → 𝐹~~>*+∞) |
35 | 34 | adantll 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐹~~>*+∞) |
36 | 17, 2, 4, 5 | xlimpnf 43383 |
. . . . . . . 8
⊢ (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) |
37 | 36 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) |
38 | 35, 37 | mpbid 231 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = +∞) → ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) |
39 | | 3mix3 1331 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
40 | 31, 38, 39 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
41 | 24, 30, 40 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
42 | 23, 41 | pm2.61dan 810 |
. . 3
⊢ (((𝜑 ∧ 𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
43 | 11, 42 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ 𝐹~~>*𝐴) → (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) |
44 | 2 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝑀 ∈ ℤ) |
45 | 5 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹:𝑍⟶ℝ*) |
46 | | simpr 485 |
. . . 4
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹 ⇝ 𝐴) |
47 | 44, 4, 45, 46 | climxlim2 43387 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ⇝ 𝐴) → 𝐹~~>*𝐴) |
48 | 18 | biimpar 478 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) → 𝐹~~>*-∞) |
49 | 48 | adantrl 713 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) → 𝐹~~>*-∞) |
50 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) → 𝐴 = -∞) |
51 | 49, 50 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥)) → 𝐹~~>*𝐴) |
52 | 36 | biimpar 478 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)) → 𝐹~~>*+∞) |
53 | 52 | adantrl 713 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) → 𝐹~~>*+∞) |
54 | | simprl 768 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) → 𝐴 = +∞) |
55 | 53, 54 | breqtrrd 5102 |
. . 3
⊢ ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))) → 𝐹~~>*𝐴) |
56 | 47, 51, 55 | 3jaodan 1429 |
. 2
⊢ ((𝜑 ∧ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘)))) → 𝐹~~>*𝐴) |
57 | 43, 56 | impbida 798 |
1
⊢ (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹 ⇝ 𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝑥 ≤ (𝐹‘𝑘))))) |