Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2v Structured version   Visualization version   GIF version

Theorem dfxlim2v 45852
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2v.1 (𝜑𝑀 ∈ ℤ)
dfxlim2v.2 𝑍 = (ℤ𝑀)
dfxlim2v.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2v (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem dfxlim2v
StepHypRef Expression
1 simplr 768 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
2 dfxlim2v.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
32adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
4 dfxlim2v.2 . . . . . . 7 𝑍 = (ℤ𝑀)
5 dfxlim2v.3 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 480 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
7 simpr 484 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
83, 4, 6, 7xlimclim2 45845 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
98adantlr 715 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
101, 9mpbid 232 . . . 4 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹𝐴)
11103mix1d 1337 . . 3 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
12 simpr 484 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐴 = -∞)
13 simpl 482 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*𝐴)
14 simpr 484 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐴 = -∞)
1513, 14breqtrd 5136 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*-∞)
1615adantll 714 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐹~~>*-∞)
17 nfcv 2892 . . . . . . . . 9 𝑘𝐹
1817, 2, 4, 5xlimmnf 45846 . . . . . . . 8 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
1918ad2antrr 726 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2016, 19mpbid 232 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
21 3mix2 1332 . . . . . 6 ((𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2212, 20, 21syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2322adantlr 715 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
24 simpll 766 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝜑𝐹~~>*𝐴))
25 xlimcl 45827 . . . . . . 7 (𝐹~~>*𝐴𝐴 ∈ ℝ*)
2625ad3antlr 731 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
27 simplr 768 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 ∈ ℝ)
28 neqne 2934 . . . . . . 7 𝐴 = -∞ → 𝐴 ≠ -∞)
2928adantl 481 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
3026, 27, 29xrnmnfpnf 45084 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 = +∞)
31 simpr 484 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32 simpl 482 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*𝐴)
33 simpr 484 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐴 = +∞)
3432, 33breqtrd 5136 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*+∞)
3534adantll 714 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐹~~>*+∞)
3617, 2, 4, 5xlimpnf 45847 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3736ad2antrr 726 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3835, 37mpbid 232 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
39 3mix3 1333 . . . . . 6 ((𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4031, 38, 39syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4124, 30, 40syl2anc 584 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4223, 41pm2.61dan 812 . . 3 (((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4311, 42pm2.61dan 812 . 2 ((𝜑𝐹~~>*𝐴) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
442adantr 480 . . . 4 ((𝜑𝐹𝐴) → 𝑀 ∈ ℤ)
455adantr 480 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℝ*)
46 simpr 484 . . . 4 ((𝜑𝐹𝐴) → 𝐹𝐴)
4744, 4, 45, 46climxlim2 45851 . . 3 ((𝜑𝐹𝐴) → 𝐹~~>*𝐴)
4818biimpar 477 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
4948adantrl 716 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*-∞)
50 simprl 770 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐴 = -∞)
5149, 50breqtrrd 5138 . . 3 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*𝐴)
5236biimpar 477 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
5352adantrl 716 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*+∞)
54 simprl 770 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐴 = +∞)
5553, 54breqtrrd 5138 . . 3 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*𝐴)
5647, 51, 553jaodan 1433 . 2 ((𝜑 ∧ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))) → 𝐹~~>*𝐴)
5743, 56impbida 800 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054   class class class wbr 5110  wf 6510  cfv 6514  cr 11074  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214  cle 11216  cz 12536  cuz 12800  cli 15457  ~~>*clsxlim 45823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fl 13761  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-rest 17392  df-topn 17393  df-topgen 17413  df-ordt 17471  df-ps 18532  df-tsr 18533  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-lm 23123  df-xms 24215  df-ms 24216  df-xlim 45824
This theorem is referenced by:  dfxlim2  45853
  Copyright terms: Public domain W3C validator