Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxlim2v Structured version   Visualization version   GIF version

Theorem dfxlim2v 44078
Description: An alternative definition for the convergence relation in the extended real numbers. This resembles what's found in most textbooks: three distinct definitions for the same symbol (limit of a sequence). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
dfxlim2v.1 (𝜑𝑀 ∈ ℤ)
dfxlim2v.2 𝑍 = (ℤ𝑀)
dfxlim2v.3 (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
dfxlim2v (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑗,𝐹,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥   𝜑,𝑗,𝑘
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝑀(𝑥,𝑗,𝑘)

Proof of Theorem dfxlim2v
StepHypRef Expression
1 simplr 767 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹~~>*𝐴)
2 dfxlim2v.1 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
32adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
4 dfxlim2v.2 . . . . . . 7 𝑍 = (ℤ𝑀)
5 dfxlim2v.3 . . . . . . . 8 (𝜑𝐹:𝑍⟶ℝ*)
65adantr 481 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
7 simpr 485 . . . . . . 7 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
83, 4, 6, 7xlimclim2 44071 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
98adantlr 713 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹~~>*𝐴𝐹𝐴))
101, 9mpbid 231 . . . 4 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → 𝐹𝐴)
11103mix1d 1336 . . 3 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
12 simpr 485 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐴 = -∞)
13 simpl 483 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*𝐴)
14 simpr 485 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐴 = -∞)
1513, 14breqtrd 5131 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = -∞) → 𝐹~~>*-∞)
1615adantll 712 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → 𝐹~~>*-∞)
17 nfcv 2907 . . . . . . . . 9 𝑘𝐹
1817, 2, 4, 5xlimmnf 44072 . . . . . . . 8 (𝜑 → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
1918ad2antrr 724 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹~~>*-∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥))
2016, 19mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)
21 3mix2 1331 . . . . . 6 ((𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2212, 20, 21syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
2322adantlr 713 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
24 simpll 765 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝜑𝐹~~>*𝐴))
25 xlimcl 44053 . . . . . . 7 (𝐹~~>*𝐴𝐴 ∈ ℝ*)
2625ad3antlr 729 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ∈ ℝ*)
27 simplr 767 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → ¬ 𝐴 ∈ ℝ)
28 neqne 2951 . . . . . . 7 𝐴 = -∞ → 𝐴 ≠ -∞)
2928adantl 482 . . . . . 6 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
3026, 27, 29xrnmnfpnf 43283 . . . . 5 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → 𝐴 = +∞)
31 simpr 485 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32 simpl 483 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*𝐴)
33 simpr 485 . . . . . . . . 9 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐴 = +∞)
3432, 33breqtrd 5131 . . . . . . . 8 ((𝐹~~>*𝐴𝐴 = +∞) → 𝐹~~>*+∞)
3534adantll 712 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → 𝐹~~>*+∞)
3617, 2, 4, 5xlimpnf 44073 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3736ad2antrr 724 . . . . . . 7 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹~~>*+∞ ↔ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))
3835, 37mpbid 231 . . . . . 6 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))
39 3mix3 1332 . . . . . 6 ((𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4031, 38, 39syl2anc 584 . . . . 5 (((𝜑𝐹~~>*𝐴) ∧ 𝐴 = +∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4124, 30, 40syl2anc 584 . . . 4 ((((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) ∧ ¬ 𝐴 = -∞) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4223, 41pm2.61dan 811 . . 3 (((𝜑𝐹~~>*𝐴) ∧ ¬ 𝐴 ∈ ℝ) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
4311, 42pm2.61dan 811 . 2 ((𝜑𝐹~~>*𝐴) → (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))))
442adantr 481 . . . 4 ((𝜑𝐹𝐴) → 𝑀 ∈ ℤ)
455adantr 481 . . . 4 ((𝜑𝐹𝐴) → 𝐹:𝑍⟶ℝ*)
46 simpr 485 . . . 4 ((𝜑𝐹𝐴) → 𝐹𝐴)
4744, 4, 45, 46climxlim2 44077 . . 3 ((𝜑𝐹𝐴) → 𝐹~~>*𝐴)
4818biimpar 478 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) → 𝐹~~>*-∞)
4948adantrl 714 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*-∞)
50 simprl 769 . . . 4 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐴 = -∞)
5149, 50breqtrrd 5133 . . 3 ((𝜑 ∧ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥)) → 𝐹~~>*𝐴)
5236biimpar 478 . . . . 5 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)) → 𝐹~~>*+∞)
5352adantrl 714 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*+∞)
54 simprl 769 . . . 4 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐴 = +∞)
5553, 54breqtrrd 5133 . . 3 ((𝜑 ∧ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘))) → 𝐹~~>*𝐴)
5647, 51, 553jaodan 1430 . 2 ((𝜑 ∧ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))) → 𝐹~~>*𝐴)
5743, 56impbida 799 1 (𝜑 → (𝐹~~>*𝐴 ↔ (𝐹𝐴 ∨ (𝐴 = -∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ≤ 𝑥) ∨ (𝐴 = +∞ ∧ ∀𝑥 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝑥 ≤ (𝐹𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1086   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  cr 11050  +∞cpnf 11186  -∞cmnf 11187  *cxr 11188  cle 11190  cz 12499  cuz 12763  cli 15366  ~~>*clsxlim 44049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fi 9347  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-ordt 17383  df-ps 18455  df-tsr 18456  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-lm 22580  df-xms 23673  df-ms 23674  df-xlim 44050
This theorem is referenced by:  dfxlim2  44079
  Copyright terms: Public domain W3C validator