![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix2 1331 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: sosn 5786 f1dom3fv3dif 7305 f1dom3el3dif 7306 xpord3inddlem 8195 elfiun 9499 fpwwe2lem12 10711 fvf1tp 13840 swrdnd0 14705 lcmfunsnlem2lem2 16686 dyaddisjlem 25649 sltsolem1 27738 tgcolg 28580 btwncolg2 28582 hlln 28633 btwnlng2 28646 frgrregorufr0 30356 constrsslem 33731 colineartriv2 36032 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |