| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5698 f1dom3fv3dif 7197 f1dom3el3dif 7198 xpord3inddlem 8079 elfiun 9309 fpwwe2lem12 10528 fvf1tp 13688 swrdnd0 14560 lcmfunsnlem2lem2 16545 dyaddisjlem 25518 sltsolem1 27609 tgcolg 28527 btwncolg2 28529 hlln 28580 btwnlng2 28593 frgrregorufr0 30296 constrsslem 33746 constrlccllem 33758 colineartriv2 36102 gpgprismgriedgdmss 48083 gpgvtxedg0 48094 gpgvtxedg1 48095 gpgedgiov 48096 eenglngeehlnmlem2 48770 |
| Copyright terms: Public domain | W3C validator |