| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5710 f1dom3fv3dif 7209 f1dom3el3dif 7210 xpord3inddlem 8094 elfiun 9339 fpwwe2lem12 10555 fvf1tp 13712 swrdnd0 14583 lcmfunsnlem2lem2 16569 dyaddisjlem 25513 sltsolem1 27604 tgcolg 28518 btwncolg2 28520 hlln 28571 btwnlng2 28584 frgrregorufr0 30287 constrsslem 33727 constrlccllem 33739 colineartriv2 36061 gpgprismgriedgdmss 48056 gpgvtxedg0 48067 gpgvtxedg1 48068 gpgedgiov 48069 eenglngeehlnmlem2 48743 |
| Copyright terms: Public domain | W3C validator |