| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5741 f1dom3fv3dif 7261 f1dom3el3dif 7262 xpord3inddlem 8153 elfiun 9442 fpwwe2lem12 10656 fvf1tp 13806 swrdnd0 14675 lcmfunsnlem2lem2 16658 dyaddisjlem 25548 sltsolem1 27639 tgcolg 28533 btwncolg2 28535 hlln 28586 btwnlng2 28599 frgrregorufr0 30305 constrsslem 33775 constrlccllem 33787 colineartriv2 36086 gpgprismgriedgdmss 48056 gpgvtxedg0 48067 gpgvtxedg1 48068 eenglngeehlnmlem2 48718 |
| Copyright terms: Public domain | W3C validator |