Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix2 1330 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: sosn 5673 f1dom3fv3dif 7141 f1dom3el3dif 7142 elfiun 9189 fpwwe2lem12 10398 swrdnd0 14370 lcmfunsnlem2lem2 16344 dyaddisjlem 24759 tgcolg 26915 btwncolg2 26917 hlln 26968 btwnlng2 26981 frgrregorufr0 28688 xpord3ind 33800 sltsolem1 33878 colineartriv2 34370 eenglngeehlnmlem2 46084 |
Copyright terms: Public domain | W3C validator |