MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1338
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1332 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  sosn  5741  f1dom3fv3dif  7261  f1dom3el3dif  7262  xpord3inddlem  8153  elfiun  9442  fpwwe2lem12  10656  fvf1tp  13806  swrdnd0  14675  lcmfunsnlem2lem2  16658  dyaddisjlem  25548  sltsolem1  27639  tgcolg  28533  btwncolg2  28535  hlln  28586  btwnlng2  28599  frgrregorufr0  30305  constrsslem  33775  constrlccllem  33787  colineartriv2  36086  gpgprismgriedgdmss  48056  gpgvtxedg0  48067  gpgvtxedg1  48068  eenglngeehlnmlem2  48718
  Copyright terms: Public domain W3C validator