| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5728 f1dom3fv3dif 7246 f1dom3el3dif 7247 xpord3inddlem 8136 elfiun 9388 fpwwe2lem12 10602 fvf1tp 13758 swrdnd0 14629 lcmfunsnlem2lem2 16616 dyaddisjlem 25503 sltsolem1 27594 tgcolg 28488 btwncolg2 28490 hlln 28541 btwnlng2 28554 frgrregorufr0 30260 constrsslem 33738 constrlccllem 33750 colineartriv2 36063 gpgprismgriedgdmss 48047 gpgvtxedg0 48058 gpgvtxedg1 48059 gpgedgiov 48060 eenglngeehlnmlem2 48731 |
| Copyright terms: Public domain | W3C validator |