MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1335
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1329 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-3or 1086
This theorem is referenced by:  sosn  5664  f1dom3fv3dif  7122  f1dom3el3dif  7123  elfiun  9119  fpwwe2lem12  10329  swrdnd0  14298  lcmfunsnlem2lem2  16272  dyaddisjlem  24664  tgcolg  26819  btwncolg2  26821  hlln  26872  btwnlng2  26885  frgrregorufr0  28589  xpord3ind  33727  sltsolem1  33805  colineartriv2  34297  eenglngeehlnmlem2  45972
  Copyright terms: Public domain W3C validator