![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix2 1330 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: sosn 5774 f1dom3fv3dif 7287 f1dom3el3dif 7288 xpord3inddlem 8177 elfiun 9467 fpwwe2lem12 10679 fvf1tp 13825 swrdnd0 14691 lcmfunsnlem2lem2 16672 dyaddisjlem 25643 sltsolem1 27734 tgcolg 28576 btwncolg2 28578 hlln 28629 btwnlng2 28642 frgrregorufr0 30352 constrsslem 33745 colineartriv2 36049 gpgvtxedg0 47955 gpgvtxedg1 47956 eenglngeehlnmlem2 48587 |
Copyright terms: Public domain | W3C validator |