| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5725 f1dom3fv3dif 7243 f1dom3el3dif 7244 xpord3inddlem 8133 elfiun 9381 fpwwe2lem12 10595 fvf1tp 13751 swrdnd0 14622 lcmfunsnlem2lem2 16609 dyaddisjlem 25496 sltsolem1 27587 tgcolg 28481 btwncolg2 28483 hlln 28534 btwnlng2 28547 frgrregorufr0 30253 constrsslem 33731 constrlccllem 33743 colineartriv2 36056 gpgprismgriedgdmss 48043 gpgvtxedg0 48054 gpgvtxedg1 48055 gpgedgiov 48056 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |