MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1336
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1330 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  sosn  5774  f1dom3fv3dif  7287  f1dom3el3dif  7288  xpord3inddlem  8177  elfiun  9467  fpwwe2lem12  10679  fvf1tp  13825  swrdnd0  14691  lcmfunsnlem2lem2  16672  dyaddisjlem  25643  sltsolem1  27734  tgcolg  28576  btwncolg2  28578  hlln  28629  btwnlng2  28642  frgrregorufr0  30352  constrsslem  33745  colineartriv2  36049  gpgvtxedg0  47955  gpgvtxedg1  47956  eenglngeehlnmlem2  48587
  Copyright terms: Public domain W3C validator