MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1337
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1331 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846  df-3or 1088
This theorem is referenced by:  sosn  5760  f1dom3fv3dif  7263  f1dom3el3dif  7264  xpord3inddlem  8136  elfiun  9421  fpwwe2lem12  10633  swrdnd0  14603  lcmfunsnlem2lem2  16572  dyaddisjlem  25103  sltsolem1  27167  tgcolg  27794  btwncolg2  27796  hlln  27847  btwnlng2  27860  frgrregorufr0  29566  colineartriv2  35028  eenglngeehlnmlem2  47377
  Copyright terms: Public domain W3C validator