| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix2 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: sosn 5708 f1dom3fv3dif 7211 f1dom3el3dif 7212 xpord3inddlem 8093 elfiun 9325 fpwwe2lem12 10544 fvf1tp 13700 swrdnd0 14572 lcmfunsnlem2lem2 16557 dyaddisjlem 25543 sltsolem1 27634 tgcolg 28552 btwncolg2 28554 hlln 28605 btwnlng2 28618 frgrregorufr0 30325 constrsslem 33826 constrlccllem 33838 colineartriv2 36184 gpgprismgriedgdmss 48214 gpgvtxedg0 48225 gpgvtxedg1 48226 gpgedgiov 48227 eenglngeehlnmlem2 48900 |
| Copyright terms: Public domain | W3C validator |