MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1336
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1330 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  sosn  5674  f1dom3fv3dif  7138  f1dom3el3dif  7139  elfiun  9177  fpwwe2lem12  10409  swrdnd0  14381  lcmfunsnlem2lem2  16355  dyaddisjlem  24770  tgcolg  26926  btwncolg2  26928  hlln  26979  btwnlng2  26992  frgrregorufr0  28697  xpord3ind  33809  sltsolem1  33887  colineartriv2  34379  eenglngeehlnmlem2  46063
  Copyright terms: Public domain W3C validator