MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1338
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1332 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  sosn  5698  f1dom3fv3dif  7197  f1dom3el3dif  7198  xpord3inddlem  8079  elfiun  9309  fpwwe2lem12  10528  fvf1tp  13688  swrdnd0  14560  lcmfunsnlem2lem2  16545  dyaddisjlem  25518  sltsolem1  27609  tgcolg  28527  btwncolg2  28529  hlln  28580  btwnlng2  28593  frgrregorufr0  30296  constrsslem  33746  constrlccllem  33758  colineartriv2  36102  gpgprismgriedgdmss  48083  gpgvtxedg0  48094  gpgvtxedg1  48095  gpgedgiov  48096  eenglngeehlnmlem2  48770
  Copyright terms: Public domain W3C validator