MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1338
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1332 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  sosn  5728  f1dom3fv3dif  7246  f1dom3el3dif  7247  xpord3inddlem  8136  elfiun  9388  fpwwe2lem12  10602  fvf1tp  13758  swrdnd0  14629  lcmfunsnlem2lem2  16616  dyaddisjlem  25503  sltsolem1  27594  tgcolg  28488  btwncolg2  28490  hlln  28541  btwnlng2  28554  frgrregorufr0  30260  constrsslem  33738  constrlccllem  33750  colineartriv2  36063  gpgprismgriedgdmss  48047  gpgvtxedg0  48058  gpgvtxedg1  48059  gpgedgiov  48060  eenglngeehlnmlem2  48731
  Copyright terms: Public domain W3C validator