MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1336
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1330 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  sosn  5673  f1dom3fv3dif  7141  f1dom3el3dif  7142  elfiun  9189  fpwwe2lem12  10398  swrdnd0  14370  lcmfunsnlem2lem2  16344  dyaddisjlem  24759  tgcolg  26915  btwncolg2  26917  hlln  26968  btwnlng2  26981  frgrregorufr0  28688  xpord3ind  33800  sltsolem1  33878  colineartriv2  34370  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator