![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix2d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix2d | ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix2 1331 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜓 ∨ 𝜃)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜓 ∨ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 df-3or 1088 |
This theorem is referenced by: sosn 5760 f1dom3fv3dif 7263 f1dom3el3dif 7264 xpord3inddlem 8136 elfiun 9421 fpwwe2lem12 10633 swrdnd0 14603 lcmfunsnlem2lem2 16572 dyaddisjlem 25103 sltsolem1 27167 tgcolg 27794 btwncolg2 27796 hlln 27847 btwnlng2 27860 frgrregorufr0 29566 colineartriv2 35028 eenglngeehlnmlem2 47377 |
Copyright terms: Public domain | W3C validator |