MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix2d Structured version   Visualization version   GIF version

Theorem 3mix2d 1338
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix2d (𝜑 → (𝜒𝜓𝜃))

Proof of Theorem 3mix2d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix2 1332 . 2 (𝜓 → (𝜒𝜓𝜃))
31, 2syl 17 1 (𝜑 → (𝜒𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  sosn  5725  f1dom3fv3dif  7243  f1dom3el3dif  7244  xpord3inddlem  8133  elfiun  9381  fpwwe2lem12  10595  fvf1tp  13751  swrdnd0  14622  lcmfunsnlem2lem2  16609  dyaddisjlem  25496  sltsolem1  27587  tgcolg  28481  btwncolg2  28483  hlln  28534  btwnlng2  28547  frgrregorufr0  30253  constrsslem  33731  constrlccllem  33743  colineartriv2  36056  gpgprismgriedgdmss  48043  gpgvtxedg0  48054  gpgvtxedg1  48055  gpgedgiov  48056  eenglngeehlnmlem2  48727
  Copyright terms: Public domain W3C validator