Step | Hyp | Ref
| Expression |
1 | | nodenselem6 33819 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No
) |
2 | | bdayval 33778 |
. . . . 5
⊢ ((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No
→ ( bday ‘(𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) = dom (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) = dom (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
4 | | dmres 5902 |
. . . . 5
⊢ dom
(𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = (∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∩ dom 𝐴) |
5 | | nodenselem5 33818 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴)) |
6 | | bdayfo 33807 |
. . . . . . . . . . 11
⊢ bday : No –onto→On |
7 | | fof 6672 |
. . . . . . . . . . 11
⊢ ( bday : No –onto→On → bday
: No ⟶On) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ bday : No
⟶On |
9 | | 0elon 6304 |
. . . . . . . . . 10
⊢ ∅
∈ On |
10 | 8, 9 | f0cli 6956 |
. . . . . . . . 9
⊢ ( bday ‘𝐴) ∈ On |
11 | 10 | onelssi 6360 |
. . . . . . . 8
⊢ (∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ ( bday
‘𝐴) →
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ⊆ ( bday
‘𝐴)) |
12 | 5, 11 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ⊆ ( bday
‘𝐴)) |
13 | | bdayval 33778 |
. . . . . . . 8
⊢ (𝐴 ∈
No → ( bday ‘𝐴) = dom 𝐴) |
14 | 13 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ( bday
‘𝐴) = dom
𝐴) |
15 | 12, 14 | sseqtrd 3957 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ⊆ dom 𝐴) |
16 | | df-ss 3900 |
. . . . . 6
⊢ (∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ⊆ dom 𝐴 ↔ (∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∩ dom 𝐴) = ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) |
17 | 15, 16 | sylib 217 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∩ dom 𝐴) = ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) |
18 | 4, 17 | syl5eq 2791 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → dom (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) |
19 | 3, 18 | eqtrd 2778 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) = ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) |
20 | 19, 5 | eqeltrd 2839 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) ∈ ( bday
‘𝐴)) |
21 | | nodenselem4 33817 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ 𝐴 <s 𝐵) → ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
22 | 21 | adantrl 712 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On) |
23 | | nodenselem8 33821 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
24 | 23 | biimpd 228 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ∧ ( bday
‘𝐴) = ( bday ‘𝐵)) → (𝐴 <s 𝐵 → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
25 | 24 | 3expia 1119 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈
No ∧ 𝐵 ∈
No ) → (( bday
‘𝐴) = ( bday ‘𝐵) → (𝐴 <s 𝐵 → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)))) |
26 | 25 | imp32 418 |
. . . . . . . . . 10
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) |
27 | 26 | simpld 494 |
. . . . . . . . 9
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o) |
28 | | eqid 2738 |
. . . . . . . . 9
⊢ ∅ =
∅ |
29 | 27, 28 | jctir 520 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ ∅ =
∅)) |
30 | 29 | 3mix1d 1334 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ ∅ = ∅)
∨ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ ∅ =
2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ ∅ =
2o))) |
31 | | fvex 6769 |
. . . . . . . 8
⊢ (𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
32 | | 0ex 5226 |
. . . . . . . 8
⊢ ∅
∈ V |
33 | 31, 32 | brtp 33623 |
. . . . . . 7
⊢ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅,
2o〉}∅ ↔ (((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ ∅ = ∅)
∨ ((𝐴‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 1o ∧ ∅ =
2o) ∨ ((𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅ ∧ ∅ =
2o))) |
34 | 30, 33 | sylibr 233 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅,
2o〉}∅) |
35 | 19 | fveq2d 6760 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
36 | | fvnobday 33808 |
. . . . . . . 8
⊢ ((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No
→ ((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) = ∅) |
37 | 1, 36 | syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) = ∅) |
38 | 35, 37 | eqtr3d 2780 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) |
39 | 34, 38 | breqtrrd 5098 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
40 | | fvres 6775 |
. . . . . . 7
⊢ (𝑦 ∈ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐴‘𝑦)) |
41 | 40 | eqcomd 2744 |
. . . . . 6
⊢ (𝑦 ∈ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦)) |
42 | 41 | rgen 3073 |
. . . . 5
⊢
∀𝑦 ∈
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) |
43 | 39, 42 | jctil 519 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
44 | | raleq 3333 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ↔ ∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦))) |
45 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝑥) = (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
46 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
47 | 45, 46 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → ((𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥) ↔ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
48 | 44, 47 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → ((∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥)) ↔ (∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})))) |
49 | 48 | rspcev 3552 |
. . . 4
⊢ ((∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On ∧ (∀𝑦 ∈ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥))) |
50 | 22, 43, 49 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥))) |
51 | | simpll 763 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 ∈ No
) |
52 | | sltval 33777 |
. . . 4
⊢ ((𝐴 ∈
No ∧ (𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No )
→ (𝐴 <s (𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥)))) |
53 | 51, 1, 52 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 <s (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) ∧ (𝐴‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥)))) |
54 | 50, 53 | mpbird 256 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 <s (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
55 | 41 | adantl 481 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝑦) = ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦)) |
56 | | nodenselem7 33820 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐴‘𝑦) = (𝐵‘𝑦))) |
57 | 56 | imp 406 |
. . . . . 6
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴‘𝑦) = (𝐵‘𝑦)) |
58 | 55, 57 | eqtr3d 2780 |
. . . . 5
⊢ ((((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦)) |
59 | 58 | ralrimiva 3107 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦)) |
60 | 26 | simprd 495 |
. . . . . . . 8
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) |
61 | 60, 28 | jctil 519 |
. . . . . . 7
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (∅ = ∅ ∧ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o)) |
62 | 61 | 3mix3d 1336 |
. . . . . 6
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((∅ = 1o ∧
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ (∅ = 1o
∧ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ (∅ = ∅
∧ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
63 | | fvex 6769 |
. . . . . . 7
⊢ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ V |
64 | 32, 63 | brtp 33623 |
. . . . . 6
⊢
(∅{〈1o, ∅〉, 〈1o,
2o〉, 〈∅, 2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ↔ ((∅ = 1o ∧
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = ∅) ∨ (∅ = 1o
∧ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o) ∨ (∅ = ∅
∧ (𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) = 2o))) |
65 | 62, 64 | sylibr 233 |
. . . . 5
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∅{〈1o,
∅〉, 〈1o, 2o〉, 〈∅,
2o〉} (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
66 | 38, 65 | eqbrtrd 5092 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
67 | | raleq 3333 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ↔ ∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦))) |
68 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (𝐵‘𝑥) = (𝐵‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) |
69 | 46, 68 | breq12d 5083 |
. . . . . 6
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → (((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥) ↔ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
70 | 67, 69 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = ∩
{𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} → ((∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)) ↔ (∀𝑦 ∈ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})))) |
71 | 70 | rspcev 3552 |
. . . 4
⊢ ((∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ∈ On ∧ (∀𝑦 ∈ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)} ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
72 | 22, 59, 66, 71 | syl12anc 833 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥))) |
73 | | simplr 765 |
. . . 4
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 ∈ No
) |
74 | | sltval 33777 |
. . . 4
⊢ (((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No
∧ 𝐵 ∈ No ) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
75 | 1, 73, 74 | syl2anc 583 |
. . 3
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑦) = (𝐵‘𝑦) ∧ ((𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝐵‘𝑥)))) |
76 | 72, 75 | mpbird 256 |
. 2
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵) |
77 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → ( bday
‘𝑥) = ( bday ‘(𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
78 | 77 | eleq1d 2823 |
. . . 4
⊢ (𝑥 = (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (( bday
‘𝑥) ∈
( bday ‘𝐴) ↔ ( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) ∈ ( bday
‘𝐴))) |
79 | | breq2 5074 |
. . . 4
⊢ (𝑥 = (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝐴 <s 𝑥 ↔ 𝐴 <s (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}))) |
80 | | breq1 5073 |
. . . 4
⊢ (𝑥 = (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → (𝑥 <s 𝐵 ↔ (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵)) |
81 | 78, 79, 80 | 3anbi123d 1434 |
. . 3
⊢ (𝑥 = (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) → ((( bday
‘𝑥) ∈
( bday ‘𝐴) ∧ 𝐴 <s 𝑥 ∧ 𝑥 <s 𝐵) ↔ (( bday
‘(𝐴 ↾
∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) ∈ ( bday
‘𝐴) ∧
𝐴 <s (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∧ (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵))) |
82 | 81 | rspcev 3552 |
. 2
⊢ (((𝐴 ↾ ∩ {𝑎
∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∈ No
∧ (( bday ‘(𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)})) ∈ ( bday
‘𝐴) ∧
𝐴 <s (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) ∧ (𝐴 ↾ ∩ {𝑎 ∈ On ∣ (𝐴‘𝑎) ≠ (𝐵‘𝑎)}) <s 𝐵)) → ∃𝑥 ∈ No
(( bday ‘𝑥) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑥 ∧ 𝑥 <s 𝐵)) |
83 | 1, 20, 54, 76, 82 | syl13anc 1370 |
1
⊢ (((𝐴 ∈
No ∧ 𝐵 ∈
No ) ∧ (( bday
‘𝐴) = ( bday ‘𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ No
(( bday ‘𝑥) ∈ ( bday
‘𝐴) ∧
𝐴 <s 𝑥 ∧ 𝑥 <s 𝐵)) |