MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nodense Structured version   Visualization version   GIF version

Theorem nodense 27604
Description: Given two distinct surreals with the same birthday, there is an older surreal lying between the two of them. Axiom SD of [Alling] p. 184. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodense (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nodense
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nodenselem6 27601 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No )
2 bdayval 27560 . . . . 5 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
31, 2syl 17 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4 dmres 5983 . . . . 5 dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴)
5 nodenselem5 27600 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
6 bdayfo 27589 . . . . . . . . . . 11 bday : No onto→On
7 fof 6772 . . . . . . . . . . 11 ( bday : No onto→On → bday : No ⟶On)
86, 7ax-mp 5 . . . . . . . . . 10 bday : No ⟶On
9 0elon 6387 . . . . . . . . . 10 ∅ ∈ On
108, 9f0cli 7070 . . . . . . . . 9 ( bday 𝐴) ∈ On
1110onelssi 6449 . . . . . . . 8 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
125, 11syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
13 bdayval 27560 . . . . . . . 8 (𝐴 No → ( bday 𝐴) = dom 𝐴)
1413ad2antrr 726 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = dom 𝐴)
1512, 14sseqtrd 3983 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴)
16 dfss2 3932 . . . . . 6 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴 ↔ ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
1715, 16sylib 218 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
184, 17eqtrid 2776 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
193, 18eqtrd 2764 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
2019, 5eqeltrd 2828 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴))
21 nodenselem4 27599 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
2221adantrl 716 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
23 nodenselem8 27603 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
2423biimpd 229 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
25243expia 1121 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (( bday 𝐴) = ( bday 𝐵) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))))
2625imp32 418 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
2726simpld 494 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o)
28 eqid 2729 . . . . . . . . 9 ∅ = ∅
2927, 28jctir 520 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅))
30293mix1d 1337 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
31 fvex 6871 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
32 0ex 5262 . . . . . . . 8 ∅ ∈ V
3331, 32brtp 5483 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
3430, 33sylibr 234 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
3519fveq2d 6862 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
36 fvnobday 27590 . . . . . . . 8 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
371, 36syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
3835, 37eqtr3d 2766 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅)
3934, 38breqtrrd 5135 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
40 fvres 6877 . . . . . . 7 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐴𝑦))
4140eqcomd 2735 . . . . . 6 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
4241rgen 3046 . . . . 5 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)
4339, 42jctil 519 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
44 raleq 3296 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)))
45 fveq2 6858 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
46 fveq2 6858 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4745, 46breq12d 5120 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
4844, 47anbi12d 632 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
4948rspcev 3588 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
5022, 43, 49syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
51 simpll 766 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
52 sltval 27559 . . . 4 ((𝐴 No ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5351, 1, 52syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5450, 53mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
5541adantl 481 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
56 nodenselem7 27602 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = (𝐵𝑦)))
5756imp 406 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
5855, 57eqtr3d 2766 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
5958ralrimiva 3125 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
6026simprd 495 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)
6160, 28jctil 519 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
62613mix3d 1339 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
63 fvex 6871 . . . . . . 7 (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
6432, 63brtp 5483 . . . . . 6 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
6562, 64sylibr 234 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6638, 65eqbrtrd 5129 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
67 raleq 3296 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦)))
68 fveq2 6858 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6946, 68breq12d 5120 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7067, 69anbi12d 632 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
7170rspcev 3588 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7222, 59, 66, 71syl12anc 836 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
73 simplr 768 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
74 sltval 27559 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No 𝐵 No ) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
751, 73, 74syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
7672, 75mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)
77 fveq2 6858 . . . . 5 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ( bday 𝑥) = ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7877eleq1d 2813 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (( bday 𝑥) ∈ ( bday 𝐴) ↔ ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴)))
79 breq2 5111 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴 <s 𝑥𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
80 breq1 5110 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝑥 <s 𝐵 ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵))
8178, 79, 803anbi123d 1438 . . 3 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵) ↔ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)))
8281rspcev 3588 . 2 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ∧ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
831, 20, 54, 76, 82syl13anc 1374 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296  {ctp 4593  cop 4595   cint 4910   class class class wbr 5107  dom cdm 5638  cres 5640  Oncon0 6332  wf 6507  ontowfo 6509  cfv 6511  1oc1o 8427  2oc2o 8428   No csur 27551   <s cslt 27552   bday cbday 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556
This theorem is referenced by:  nocvxminlem  27689  addsproplem6  27881  negsproplem6  27939  mulsproplem13  28031  mulsproplem14  28032
  Copyright terms: Public domain W3C validator