MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nodense Structured version   Visualization version   GIF version

Theorem nodense 27755
Description: Given two distinct surreals with the same birthday, there is an older surreal lying between the two of them. Axiom SD of [Alling] p. 184. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodense (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nodense
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nodenselem6 27752 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No )
2 bdayval 27711 . . . . 5 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
31, 2syl 17 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4 dmres 6041 . . . . 5 dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴)
5 nodenselem5 27751 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
6 bdayfo 27740 . . . . . . . . . . 11 bday : No onto→On
7 fof 6834 . . . . . . . . . . 11 ( bday : No onto→On → bday : No ⟶On)
86, 7ax-mp 5 . . . . . . . . . 10 bday : No ⟶On
9 0elon 6449 . . . . . . . . . 10 ∅ ∈ On
108, 9f0cli 7132 . . . . . . . . 9 ( bday 𝐴) ∈ On
1110onelssi 6510 . . . . . . . 8 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
125, 11syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
13 bdayval 27711 . . . . . . . 8 (𝐴 No → ( bday 𝐴) = dom 𝐴)
1413ad2antrr 725 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = dom 𝐴)
1512, 14sseqtrd 4049 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴)
16 dfss2 3994 . . . . . 6 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴 ↔ ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
1715, 16sylib 218 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
184, 17eqtrid 2792 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
193, 18eqtrd 2780 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
2019, 5eqeltrd 2844 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴))
21 nodenselem4 27750 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
2221adantrl 715 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
23 nodenselem8 27754 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
2423biimpd 229 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
25243expia 1121 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (( bday 𝐴) = ( bday 𝐵) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))))
2625imp32 418 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
2726simpld 494 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o)
28 eqid 2740 . . . . . . . . 9 ∅ = ∅
2927, 28jctir 520 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅))
30293mix1d 1336 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
31 fvex 6933 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
32 0ex 5325 . . . . . . . 8 ∅ ∈ V
3331, 32brtp 5542 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
3430, 33sylibr 234 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
3519fveq2d 6924 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
36 fvnobday 27741 . . . . . . . 8 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
371, 36syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
3835, 37eqtr3d 2782 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅)
3934, 38breqtrrd 5194 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
40 fvres 6939 . . . . . . 7 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐴𝑦))
4140eqcomd 2746 . . . . . 6 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
4241rgen 3069 . . . . 5 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)
4339, 42jctil 519 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
44 raleq 3331 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)))
45 fveq2 6920 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
46 fveq2 6920 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4745, 46breq12d 5179 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
4844, 47anbi12d 631 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
4948rspcev 3635 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
5022, 43, 49syl2anc 583 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
51 simpll 766 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
52 sltval 27710 . . . 4 ((𝐴 No ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5351, 1, 52syl2anc 583 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5450, 53mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
5541adantl 481 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
56 nodenselem7 27753 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = (𝐵𝑦)))
5756imp 406 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
5855, 57eqtr3d 2782 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
5958ralrimiva 3152 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
6026simprd 495 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)
6160, 28jctil 519 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
62613mix3d 1338 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
63 fvex 6933 . . . . . . 7 (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
6432, 63brtp 5542 . . . . . 6 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
6562, 64sylibr 234 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6638, 65eqbrtrd 5188 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
67 raleq 3331 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦)))
68 fveq2 6920 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6946, 68breq12d 5179 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7067, 69anbi12d 631 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
7170rspcev 3635 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7222, 59, 66, 71syl12anc 836 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
73 simplr 768 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
74 sltval 27710 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No 𝐵 No ) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
751, 73, 74syl2anc 583 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
7672, 75mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)
77 fveq2 6920 . . . . 5 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ( bday 𝑥) = ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7877eleq1d 2829 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (( bday 𝑥) ∈ ( bday 𝐴) ↔ ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴)))
79 breq2 5170 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴 <s 𝑥𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
80 breq1 5169 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝑥 <s 𝐵 ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵))
8178, 79, 803anbi123d 1436 . . 3 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵) ↔ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)))
8281rspcev 3635 . 2 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ∧ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
831, 20, 54, 76, 82syl13anc 1372 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  cin 3975  wss 3976  c0 4352  {ctp 4652  cop 4654   cint 4970   class class class wbr 5166  dom cdm 5700  cres 5702  Oncon0 6395  wf 6569  ontowfo 6571  cfv 6573  1oc1o 8515  2oc2o 8516   No csur 27702   <s cslt 27703   bday cbday 27704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707
This theorem is referenced by:  nocvxminlem  27840  addsproplem6  28025  negsproplem6  28083  mulsproplem13  28172  mulsproplem14  28173
  Copyright terms: Public domain W3C validator