MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nodense Structured version   Visualization version   GIF version

Theorem nodense 27656
Description: Given two distinct surreals with the same birthday, there is an older surreal lying between the two of them. Axiom SD of [Alling] p. 184. (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodense (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nodense
Dummy variables 𝑎 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nodenselem6 27653 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No )
2 bdayval 27612 . . . . 5 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
31, 2syl 17 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4 dmres 5999 . . . . 5 dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴)
5 nodenselem5 27652 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴))
6 bdayfo 27641 . . . . . . . . . . 11 bday : No onto→On
7 fof 6790 . . . . . . . . . . 11 ( bday : No onto→On → bday : No ⟶On)
86, 7ax-mp 5 . . . . . . . . . 10 bday : No ⟶On
9 0elon 6407 . . . . . . . . . 10 ∅ ∈ On
108, 9f0cli 7088 . . . . . . . . 9 ( bday 𝐴) ∈ On
1110onelssi 6469 . . . . . . . 8 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ ( bday 𝐴) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
125, 11syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ ( bday 𝐴))
13 bdayval 27612 . . . . . . . 8 (𝐴 No → ( bday 𝐴) = dom 𝐴)
1413ad2antrr 726 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday 𝐴) = dom 𝐴)
1512, 14sseqtrd 3995 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴)
16 dfss2 3944 . . . . . 6 ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ⊆ dom 𝐴 ↔ ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
1715, 16sylib 218 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∩ dom 𝐴) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
184, 17eqtrid 2782 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → dom (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
193, 18eqtrd 2770 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})
2019, 5eqeltrd 2834 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴))
21 nodenselem4 27651 . . . . 5 (((𝐴 No 𝐵 No ) ∧ 𝐴 <s 𝐵) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
2221adantrl 716 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On)
23 nodenselem8 27655 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
2423biimpd 229 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ∧ ( bday 𝐴) = ( bday 𝐵)) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
25243expia 1121 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (( bday 𝐴) = ( bday 𝐵) → (𝐴 <s 𝐵 → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))))
2625imp32 418 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
2726simpld 494 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o)
28 eqid 2735 . . . . . . . . 9 ∅ = ∅
2927, 28jctir 520 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅))
30293mix1d 1337 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
31 fvex 6889 . . . . . . . 8 (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
32 0ex 5277 . . . . . . . 8 ∅ ∈ V
3331, 32brtp 5498 . . . . . . 7 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅ ↔ (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = ∅) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 1o ∧ ∅ = 2o) ∨ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅ ∧ ∅ = 2o)))
3430, 33sylibr 234 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩}∅)
3519fveq2d 6880 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
36 fvnobday 27642 . . . . . . . 8 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
371, 36syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) = ∅)
3835, 37eqtr3d 2772 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅)
3934, 38breqtrrd 5147 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
40 fvres 6895 . . . . . . 7 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐴𝑦))
4140eqcomd 2741 . . . . . 6 (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
4241rgen 3053 . . . . 5 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)
4339, 42jctil 519 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
44 raleq 3302 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦)))
45 fveq2 6876 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑥) = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
46 fveq2 6876 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
4745, 46breq12d 5132 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥) ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
4844, 47anbi12d 632 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
4948rspcev 3601 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
5022, 43, 49syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥)))
51 simpll 766 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 No )
52 sltval 27611 . . . 4 ((𝐴 No ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5351, 1, 52syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ∃𝑥 ∈ On (∀𝑦𝑥 (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) ∧ (𝐴𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥))))
5450, 53mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
5541adantl 481 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦))
56 nodenselem7 27654 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐴𝑦) = (𝐵𝑦)))
5756imp 406 . . . . . 6 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴𝑦) = (𝐵𝑦))
5855, 57eqtr3d 2772 . . . . 5 ((((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) ∧ 𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
5958ralrimiva 3132 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦))
6026simprd 495 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)
6160, 28jctil 519 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o))
62613mix3d 1339 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
63 fvex 6889 . . . . . . 7 (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ V
6432, 63brtp 5498 . . . . . 6 (∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ↔ ((∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = ∅) ∨ (∅ = 1o ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o) ∨ (∅ = ∅ ∧ (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) = 2o)))
6562, 64sylibr 234 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∅{⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6638, 65eqbrtrd 5141 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
67 raleq 3302 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ↔ ∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦)))
68 fveq2 6876 . . . . . . 7 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (𝐵𝑥) = (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))
6946, 68breq12d 5132 . . . . . 6 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥) ↔ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7067, 69anbi12d 632 . . . . 5 (𝑥 = {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} → ((∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)) ↔ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))))
7170rspcev 3601 . . . 4 (( {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ∈ On ∧ (∀𝑦 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)} ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘ {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}))) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
7222, 59, 66, 71syl12anc 836 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥)))
73 simplr 768 . . . 4 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → 𝐵 No )
74 sltval 27611 . . . 4 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No 𝐵 No ) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
751, 73, 74syl2anc 584 . . 3 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵 ↔ ∃𝑥 ∈ On (∀𝑦𝑥 ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑦) = (𝐵𝑦) ∧ ((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})‘𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝐵𝑥))))
7672, 75mpbird 257 . 2 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)
77 fveq2 6876 . . . . 5 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ( bday 𝑥) = ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
7877eleq1d 2819 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (( bday 𝑥) ∈ ( bday 𝐴) ↔ ( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴)))
79 breq2 5123 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝐴 <s 𝑥𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})))
80 breq1 5122 . . . 4 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → (𝑥 <s 𝐵 ↔ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵))
8178, 79, 803anbi123d 1438 . . 3 (𝑥 = (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) → ((( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵) ↔ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)))
8281rspcev 3601 . 2 (((𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∈ No ∧ (( bday ‘(𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)})) ∈ ( bday 𝐴) ∧ 𝐴 <s (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) ∧ (𝐴 {𝑎 ∈ On ∣ (𝐴𝑎) ≠ (𝐵𝑎)}) <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
831, 20, 54, 76, 82syl13anc 1374 1 (((𝐴 No 𝐵 No ) ∧ (( bday 𝐴) = ( bday 𝐵) ∧ 𝐴 <s 𝐵)) → ∃𝑥 No (( bday 𝑥) ∈ ( bday 𝐴) ∧ 𝐴 <s 𝑥𝑥 <s 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  {crab 3415  cin 3925  wss 3926  c0 4308  {ctp 4605  cop 4607   cint 4922   class class class wbr 5119  dom cdm 5654  cres 5656  Oncon0 6352  wf 6527  ontowfo 6529  cfv 6531  1oc1o 8473  2oc2o 8474   No csur 27603   <s cslt 27604   bday cbday 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fo 6537  df-fv 6539  df-1o 8480  df-2o 8481  df-no 27606  df-slt 27607  df-bday 27608
This theorem is referenced by:  nocvxminlem  27741  addsproplem6  27933  negsproplem6  27991  mulsproplem13  28083  mulsproplem14  28084
  Copyright terms: Public domain W3C validator