MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwnlng2 Structured version   Visualization version   GIF version

Theorem btwnlng2 28306
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
btwnlng1.p 𝑃 = (Baseβ€˜πΊ)
btwnlng1.i 𝐼 = (Itvβ€˜πΊ)
btwnlng1.l 𝐿 = (LineGβ€˜πΊ)
btwnlng1.g (πœ‘ β†’ 𝐺 ∈ TarskiG)
btwnlng1.x (πœ‘ β†’ 𝑋 ∈ 𝑃)
btwnlng1.y (πœ‘ β†’ π‘Œ ∈ 𝑃)
btwnlng1.z (πœ‘ β†’ 𝑍 ∈ 𝑃)
btwnlng1.d (πœ‘ β†’ 𝑋 β‰  π‘Œ)
btwnlng2.1 (πœ‘ β†’ 𝑋 ∈ (π‘πΌπ‘Œ))
Assertion
Ref Expression
btwnlng2 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))

Proof of Theorem btwnlng2
StepHypRef Expression
1 btwnlng2.1 . . 3 (πœ‘ β†’ 𝑋 ∈ (π‘πΌπ‘Œ))
213mix2d 1334 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍)))
3 btwnlng1.p . . 3 𝑃 = (Baseβ€˜πΊ)
4 btwnlng1.l . . 3 𝐿 = (LineGβ€˜πΊ)
5 btwnlng1.i . . 3 𝐼 = (Itvβ€˜πΊ)
6 btwnlng1.g . . 3 (πœ‘ β†’ 𝐺 ∈ TarskiG)
7 btwnlng1.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑃)
8 btwnlng1.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑃)
9 btwnlng1.d . . 3 (πœ‘ β†’ 𝑋 β‰  π‘Œ)
10 btwnlng1.z . . 3 (πœ‘ β†’ 𝑍 ∈ 𝑃)
113, 4, 5, 6, 7, 8, 9, 10tgellng 28239 . 2 (πœ‘ β†’ (𝑍 ∈ (π‘‹πΏπ‘Œ) ↔ (𝑍 ∈ (π‘‹πΌπ‘Œ) ∨ 𝑋 ∈ (π‘πΌπ‘Œ) ∨ π‘Œ ∈ (𝑋𝐼𝑍))))
122, 11mpbird 257 1 (πœ‘ β†’ 𝑍 ∈ (π‘‹πΏπ‘Œ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∨ w3o 1083   = wceq 1533   ∈ wcel 2098   β‰  wne 2932  β€˜cfv 6533  (class class class)co 7401  Basecbs 17142  TarskiGcstrkg 28113  Itvcitv 28119  LineGclng 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-trkg 28139
This theorem is referenced by:  mirln  28362  colperpexlem3  28418  outpasch  28441  hpgerlem  28451
  Copyright terms: Public domain W3C validator