| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8133 elfiun 9381 nnnegz 12532 fvf1tp 13751 hashv01gt1 14310 lcmfunsnlem2lem2 16609 cshwshashlem1 17066 dyaddisjlem 25496 zabsle1 27207 noextendgt 27582 sltsolem1 27587 nodense 27604 btwncolg3 28484 btwnlng3 28548 frgr3vlem2 30203 3vfriswmgr 30207 frgrregorufr0 30253 constrcccllem 33744 weiunso 36454 fnwe2lem3 43041 omcl2 43322 gpgprismgriedgdmss 48043 gpgedgvtx1 48053 gpgvtxedg0 48054 gpgvtxedg1 48055 gpg3kgrtriexlem6 48079 gpgprismgr4cycllem3 48087 eenglngeehlnmlem2 48727 |
| Copyright terms: Public domain | W3C validator |