MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1339
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1333 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  xpord3inddlem  8110  elfiun  9357  nnnegz  12508  fvf1tp  13727  hashv01gt1  14286  lcmfunsnlem2lem2  16585  cshwshashlem1  17042  dyaddisjlem  25472  zabsle1  27183  noextendgt  27558  sltsolem1  27563  nodense  27580  btwncolg3  28460  btwnlng3  28524  frgr3vlem2  30176  3vfriswmgr  30180  frgrregorufr0  30226  constrcccllem  33717  weiunso  36427  fnwe2lem3  43014  omcl2  43295  gpgprismgriedgdmss  48016  gpgedgvtx1  48026  gpgvtxedg0  48027  gpgvtxedg1  48028  gpg3kgrtriexlem6  48052  gpgprismgr4cycllem3  48060  eenglngeehlnmlem2  48700
  Copyright terms: Public domain W3C validator