| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8079 elfiun 9309 nnnegz 12466 fvf1tp 13688 hashv01gt1 14247 lcmfunsnlem2lem2 16545 cshwshashlem1 17002 dyaddisjlem 25518 zabsle1 27229 noextendgt 27604 sltsolem1 27609 nodense 27626 btwncolg3 28530 btwnlng3 28594 frgr3vlem2 30246 3vfriswmgr 30250 frgrregorufr0 30296 constrcccllem 33759 weiunso 36500 fnwe2lem3 43085 omcl2 43366 gpgprismgriedgdmss 48083 gpgedgvtx1 48093 gpgvtxedg0 48094 gpgvtxedg1 48095 gpg3kgrtriexlem6 48119 gpgprismgr4cycllem3 48128 eenglngeehlnmlem2 48770 |
| Copyright terms: Public domain | W3C validator |