MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1337
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1331 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  xpord3inddlem  8178  elfiun  9468  nnnegz  12614  fvf1tp  13826  hashv01gt1  14381  lcmfunsnlem2lem2  16673  cshwshashlem1  17130  dyaddisjlem  25644  zabsle1  27355  noextendgt  27730  sltsolem1  27735  nodense  27752  btwncolg3  28580  btwnlng3  28644  frgr3vlem2  30303  3vfriswmgr  30307  frgrregorufr0  30353  weiunso  36449  fnwe2lem3  43041  omcl2  43323  gpgedgvtx1  47955  gpgvtxedg0  47956  gpgvtxedg1  47957  eenglngeehlnmlem2  48588
  Copyright terms: Public domain W3C validator