| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8093 elfiun 9325 nnnegz 12482 fvf1tp 13700 hashv01gt1 14259 lcmfunsnlem2lem2 16557 cshwshashlem1 17014 dyaddisjlem 25543 zabsle1 27254 noextendgt 27629 sltsolem1 27634 nodense 27651 btwncolg3 28555 btwnlng3 28619 frgr3vlem2 30275 3vfriswmgr 30279 frgrregorufr0 30325 constrcccllem 33839 weiunso 36582 fnwe2lem3 43209 omcl2 43490 gpgprismgriedgdmss 48214 gpgedgvtx1 48224 gpgvtxedg0 48225 gpgvtxedg1 48226 gpg3kgrtriexlem6 48250 gpgprismgr4cycllem3 48259 eenglngeehlnmlem2 48900 |
| Copyright terms: Public domain | W3C validator |