MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1337
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1331 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  elfiun  9189  nnnegz  12322  hashv01gt1  14059  lcmfunsnlem2lem2  16344  cshwshashlem1  16797  dyaddisjlem  24759  zabsle1  26444  btwncolg3  26918  btwnlng3  26982  frgr3vlem2  28638  3vfriswmgr  28642  frgrregorufr0  28688  xpord3ind  33800  noextendgt  33873  sltsolem1  33878  nodense  33895  fnwe2lem3  40877  eenglngeehlnmlem2  46084
  Copyright terms: Public domain W3C validator