![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix3 1332 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 847 df-3or 1088 |
This theorem is referenced by: xpord3inddlem 8195 elfiun 9499 nnnegz 12642 fvf1tp 13840 hashv01gt1 14394 lcmfunsnlem2lem2 16686 cshwshashlem1 17143 dyaddisjlem 25649 zabsle1 27358 noextendgt 27733 sltsolem1 27738 nodense 27755 btwncolg3 28583 btwnlng3 28647 frgr3vlem2 30306 3vfriswmgr 30310 frgrregorufr0 30356 weiunso 36432 fnwe2lem3 43009 omcl2 43295 eenglngeehlnmlem2 48472 |
Copyright terms: Public domain | W3C validator |