MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1338
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1332 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 847  df-3or 1088
This theorem is referenced by:  xpord3inddlem  8195  elfiun  9499  nnnegz  12642  fvf1tp  13840  hashv01gt1  14394  lcmfunsnlem2lem2  16686  cshwshashlem1  17143  dyaddisjlem  25649  zabsle1  27358  noextendgt  27733  sltsolem1  27738  nodense  27755  btwncolg3  28583  btwnlng3  28647  frgr3vlem2  30306  3vfriswmgr  30310  frgrregorufr0  30356  weiunso  36432  fnwe2lem3  43009  omcl2  43295  eenglngeehlnmlem2  48472
  Copyright terms: Public domain W3C validator