| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8110 elfiun 9357 nnnegz 12508 fvf1tp 13727 hashv01gt1 14286 lcmfunsnlem2lem2 16585 cshwshashlem1 17042 dyaddisjlem 25472 zabsle1 27183 noextendgt 27558 sltsolem1 27563 nodense 27580 btwncolg3 28460 btwnlng3 28524 frgr3vlem2 30176 3vfriswmgr 30180 frgrregorufr0 30226 constrcccllem 33717 weiunso 36427 fnwe2lem3 43014 omcl2 43295 gpgprismgriedgdmss 48016 gpgedgvtx1 48026 gpgvtxedg0 48027 gpgvtxedg1 48028 gpg3kgrtriexlem6 48052 gpgprismgr4cycllem3 48060 eenglngeehlnmlem2 48700 |
| Copyright terms: Public domain | W3C validator |