| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8094 elfiun 9339 nnnegz 12493 fvf1tp 13712 hashv01gt1 14271 lcmfunsnlem2lem2 16569 cshwshashlem1 17026 dyaddisjlem 25513 zabsle1 27224 noextendgt 27599 sltsolem1 27604 nodense 27621 btwncolg3 28521 btwnlng3 28585 frgr3vlem2 30237 3vfriswmgr 30241 frgrregorufr0 30287 constrcccllem 33740 weiunso 36459 fnwe2lem3 43045 omcl2 43326 gpgprismgriedgdmss 48056 gpgedgvtx1 48066 gpgvtxedg0 48067 gpgvtxedg1 48068 gpg3kgrtriexlem6 48092 gpgprismgr4cycllem3 48101 eenglngeehlnmlem2 48743 |
| Copyright terms: Public domain | W3C validator |