| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8136 elfiun 9388 nnnegz 12539 fvf1tp 13758 hashv01gt1 14317 lcmfunsnlem2lem2 16616 cshwshashlem1 17073 dyaddisjlem 25503 zabsle1 27214 noextendgt 27589 sltsolem1 27594 nodense 27611 btwncolg3 28491 btwnlng3 28555 frgr3vlem2 30210 3vfriswmgr 30214 frgrregorufr0 30260 constrcccllem 33751 weiunso 36461 fnwe2lem3 43048 omcl2 43329 gpgprismgriedgdmss 48047 gpgedgvtx1 48057 gpgvtxedg0 48058 gpgvtxedg1 48059 gpg3kgrtriexlem6 48083 gpgprismgr4cycllem3 48091 eenglngeehlnmlem2 48731 |
| Copyright terms: Public domain | W3C validator |