| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version | ||
| Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3mixd.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| 3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | 3mix3 1333 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: xpord3inddlem 8158 elfiun 9447 nnnegz 12596 fvf1tp 13811 hashv01gt1 14368 lcmfunsnlem2lem2 16663 cshwshashlem1 17120 dyaddisjlem 25553 zabsle1 27264 noextendgt 27639 sltsolem1 27644 nodense 27661 btwncolg3 28541 btwnlng3 28605 frgr3vlem2 30260 3vfriswmgr 30264 frgrregorufr0 30310 constrcccllem 33793 weiunso 36489 fnwe2lem3 43043 omcl2 43324 gpgprismgriedgdmss 48023 gpgedgvtx1 48033 gpgvtxedg0 48034 gpgvtxedg1 48035 gpg3kgrtriexlem6 48057 gpgprismgr4cycllem3 48063 eenglngeehlnmlem2 48685 |
| Copyright terms: Public domain | W3C validator |