![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix3 1331 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
This theorem is referenced by: xpord3inddlem 8178 elfiun 9468 nnnegz 12614 fvf1tp 13826 hashv01gt1 14381 lcmfunsnlem2lem2 16673 cshwshashlem1 17130 dyaddisjlem 25644 zabsle1 27355 noextendgt 27730 sltsolem1 27735 nodense 27752 btwncolg3 28580 btwnlng3 28644 frgr3vlem2 30303 3vfriswmgr 30307 frgrregorufr0 30353 weiunso 36449 fnwe2lem3 43041 omcl2 43323 gpgedgvtx1 47955 gpgvtxedg0 47956 gpgvtxedg1 47957 eenglngeehlnmlem2 48588 |
Copyright terms: Public domain | W3C validator |