MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1336
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1330 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 844  df-3or 1086
This theorem is referenced by:  elfiun  9119  nnnegz  12252  hashv01gt1  13987  lcmfunsnlem2lem2  16272  cshwshashlem1  16725  dyaddisjlem  24664  zabsle1  26349  btwncolg3  26822  btwnlng3  26886  frgr3vlem2  28539  3vfriswmgr  28543  frgrregorufr0  28589  xpord3ind  33727  noextendgt  33800  sltsolem1  33805  nodense  33822  fnwe2lem3  40793  eenglngeehlnmlem2  45972
  Copyright terms: Public domain W3C validator