MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3mix3d Structured version   Visualization version   GIF version

Theorem 3mix3d 1339
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypothesis
Ref Expression
3mixd.1 (𝜑𝜓)
Assertion
Ref Expression
3mix3d (𝜑 → (𝜒𝜃𝜓))

Proof of Theorem 3mix3d
StepHypRef Expression
1 3mixd.1 . 2 (𝜑𝜓)
2 3mix3 1333 . 2 (𝜓 → (𝜒𝜃𝜓))
31, 2syl 17 1 (𝜑 → (𝜒𝜃𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  xpord3inddlem  8079  elfiun  9309  nnnegz  12466  fvf1tp  13688  hashv01gt1  14247  lcmfunsnlem2lem2  16545  cshwshashlem1  17002  dyaddisjlem  25518  zabsle1  27229  noextendgt  27604  sltsolem1  27609  nodense  27626  btwncolg3  28530  btwnlng3  28594  frgr3vlem2  30246  3vfriswmgr  30250  frgrregorufr0  30296  constrcccllem  33759  weiunso  36500  fnwe2lem3  43085  omcl2  43366  gpgprismgriedgdmss  48083  gpgedgvtx1  48093  gpgvtxedg0  48094  gpgvtxedg1  48095  gpg3kgrtriexlem6  48119  gpgprismgr4cycllem3  48128  eenglngeehlnmlem2  48770
  Copyright terms: Public domain W3C validator