Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix3 1330 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 844 df-3or 1086 |
This theorem is referenced by: elfiun 9119 nnnegz 12252 hashv01gt1 13987 lcmfunsnlem2lem2 16272 cshwshashlem1 16725 dyaddisjlem 24664 zabsle1 26349 btwncolg3 26822 btwnlng3 26886 frgr3vlem2 28539 3vfriswmgr 28543 frgrregorufr0 28589 xpord3ind 33727 noextendgt 33800 sltsolem1 33805 nodense 33822 fnwe2lem3 40793 eenglngeehlnmlem2 45972 |
Copyright terms: Public domain | W3C validator |