![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3mix3d | Structured version Visualization version GIF version |
Description: Deduction introducing triple disjunction. (Contributed by Scott Fenton, 8-Jun-2011.) |
Ref | Expression |
---|---|
3mixd.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
3mix3d | ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mixd.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | 3mix3 1329 | . 2 ⊢ (𝜓 → (𝜒 ∨ 𝜃 ∨ 𝜓)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝜒 ∨ 𝜃 ∨ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 df-3or 1085 |
This theorem is referenced by: xpord3inddlem 8168 elfiun 9473 nnnegz 12613 hashv01gt1 14362 lcmfunsnlem2lem2 16640 cshwshashlem1 17098 dyaddisjlem 25615 zabsle1 27325 noextendgt 27700 sltsolem1 27705 nodense 27722 btwncolg3 28484 btwnlng3 28548 frgr3vlem2 30207 3vfriswmgr 30211 frgrregorufr0 30257 fnwe2lem3 42713 omcl2 42999 eenglngeehlnmlem2 48126 |
Copyright terms: Public domain | W3C validator |