MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sosn Structured version   Visualization version   GIF version

Theorem sosn 5673
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
sosn (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem sosn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4578 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
2 elsni 4578 . . . . . . 7 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
32eqcomd 2744 . . . . . 6 (𝑦 ∈ {𝐴} → 𝐴 = 𝑦)
41, 3sylan9eq 2798 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦)
543mix2d 1336 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
65rgen2 3120 . . 3 𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
7 df-so 5504 . . 3 (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
86, 7mpbiran2 707 . 2 (𝑅 Or {𝐴} ↔ 𝑅 Po {𝐴})
9 posn 5672 . 2 (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
108, 9bitrid 282 1 (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  wcel 2106  wral 3064  {csn 4561   class class class wbr 5074   Po wpo 5501   Or wor 5502  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596
This theorem is referenced by:  wesn  5675
  Copyright terms: Public domain W3C validator