Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sosn Structured version   Visualization version   GIF version

Theorem sosn 5606
 Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.)
Assertion
Ref Expression
sosn (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))

Proof of Theorem sosn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elsni 4545 . . . . . 6 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
2 elsni 4545 . . . . . . 7 (𝑦 ∈ {𝐴} → 𝑦 = 𝐴)
32eqcomd 2807 . . . . . 6 (𝑦 ∈ {𝐴} → 𝐴 = 𝑦)
41, 3sylan9eq 2856 . . . . 5 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦)
543mix2d 1334 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥))
65rgen2 3171 . . 3 𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)
7 df-so 5443 . . 3 (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
86, 7mpbiran2 709 . 2 (𝑅 Or {𝐴} ↔ 𝑅 Po {𝐴})
9 posn 5605 . 2 (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴))
108, 9syl5bb 286 1 (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ w3o 1083   ∈ wcel 2112  ∀wral 3109  {csn 4528   class class class wbr 5033   Po wpo 5440   Or wor 5441  Rel wrel 5528 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rex 3115  df-v 3446  df-sbc 3724  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-br 5034  df-opab 5096  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530 This theorem is referenced by:  wesn  5608
 Copyright terms: Public domain W3C validator