![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sosn | Structured version Visualization version GIF version |
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
sosn | ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4638 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | elsni 4638 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
3 | 2 | eqcomd 2730 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝐴 = 𝑦) |
4 | 1, 3 | sylan9eq 2784 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
5 | 4 | 3mix2d 1334 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
6 | 5 | rgen2 3189 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
7 | df-so 5580 | . . 3 ⊢ (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
8 | 6, 7 | mpbiran2 707 | . 2 ⊢ (𝑅 Or {𝐴} ↔ 𝑅 Po {𝐴}) |
9 | posn 5752 | . 2 ⊢ (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
10 | 8, 9 | bitrid 283 | 1 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1083 ∈ wcel 2098 ∀wral 3053 {csn 4621 class class class wbr 5139 Po wpo 5577 Or wor 5578 Rel wrel 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 |
This theorem is referenced by: wesn 5755 |
Copyright terms: Public domain | W3C validator |