![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sosn | Structured version Visualization version GIF version |
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
sosn | ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4648 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | elsni 4648 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
3 | 2 | eqcomd 2741 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝐴 = 𝑦) |
4 | 1, 3 | sylan9eq 2795 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
5 | 4 | 3mix2d 1336 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
6 | 5 | rgen2 3197 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
7 | df-so 5598 | . . 3 ⊢ (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
8 | 6, 7 | mpbiran2 710 | . 2 ⊢ (𝑅 Or {𝐴} ↔ 𝑅 Po {𝐴}) |
9 | posn 5774 | . 2 ⊢ (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
10 | 8, 9 | bitrid 283 | 1 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ w3o 1085 ∈ wcel 2106 ∀wral 3059 {csn 4631 class class class wbr 5148 Po wpo 5595 Or wor 5596 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 |
This theorem is referenced by: wesn 5777 |
Copyright terms: Public domain | W3C validator |