Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sosn | Structured version Visualization version GIF version |
Description: Strict ordering on a singleton. (Contributed by Mario Carneiro, 28-Dec-2014.) |
Ref | Expression |
---|---|
sosn | ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4575 | . . . . . 6 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
2 | elsni 4575 | . . . . . . 7 ⊢ (𝑦 ∈ {𝐴} → 𝑦 = 𝐴) | |
3 | 2 | eqcomd 2744 | . . . . . 6 ⊢ (𝑦 ∈ {𝐴} → 𝐴 = 𝑦) |
4 | 1, 3 | sylan9eq 2799 | . . . . 5 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → 𝑥 = 𝑦) |
5 | 4 | 3mix2d 1335 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ {𝐴}) → (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥)) |
6 | 5 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥) |
7 | df-so 5495 | . . 3 ⊢ (𝑅 Or {𝐴} ↔ (𝑅 Po {𝐴} ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | |
8 | 6, 7 | mpbiran2 706 | . 2 ⊢ (𝑅 Or {𝐴} ↔ 𝑅 Po {𝐴}) |
9 | posn 5663 | . 2 ⊢ (Rel 𝑅 → (𝑅 Po {𝐴} ↔ ¬ 𝐴𝑅𝐴)) | |
10 | 8, 9 | syl5bb 282 | 1 ⊢ (Rel 𝑅 → (𝑅 Or {𝐴} ↔ ¬ 𝐴𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ w3o 1084 ∈ wcel 2108 ∀wral 3063 {csn 4558 class class class wbr 5070 Po wpo 5492 Or wor 5493 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 |
This theorem is referenced by: wesn 5666 |
Copyright terms: Public domain | W3C validator |