MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Visualization version   GIF version

Theorem dyaddisjlem 24664
Description: Lemma for dyaddisj 24665. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisjlem ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 771 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℤ)
2 simplrl 773 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℕ0)
3 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
43dyadval 24661 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
51, 2, 4syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
65fveq2d 6760 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
7 df-ov 7258 . . . . . . . 8 ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
86, 7eqtr4di 2797 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
9 simpllr 772 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℤ)
10 simplrr 774 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℕ0)
113dyadval 24661 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
129, 10, 11syl2anc 583 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1312fveq2d 6760 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
14 df-ov 7258 . . . . . . . 8 ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1513, 14eqtr4di 2797 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))))
168, 15ineq12d 4144 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
17 incom 4131 . . . . . 6 (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
1816, 17eqtrdi 2795 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
1918adantr 480 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
201zred 12355 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℝ)
2120recnd 10934 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℂ)
22 2nn 11976 . . . . . . . . . . . 12 2 ∈ ℕ
23 nnexpcl 13723 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
2422, 2, 23sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℕ)
2524nncnd 11919 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℂ)
26 nnexpcl 13723 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
2722, 10, 26sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℕ)
2827nncnd 11919 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℂ)
2924nnne0d 11953 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ≠ 0)
3021, 25, 28, 29div13d 11705 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · 𝐴))
31 2cnd 11981 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ∈ ℂ)
32 2ne0 12007 . . . . . . . . . . . . 13 2 ≠ 0
3332a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ≠ 0)
342nn0zd 12353 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℤ)
3510nn0zd 12353 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℤ)
3631, 33, 34, 35expsubd 13803 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) = ((2↑𝐷) / (2↑𝐶)))
37 2z 12282 . . . . . . . . . . . 12 2 ∈ ℤ
38 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶𝐷)
39 znn0sub 12297 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4034, 35, 39syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4138, 40mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐷𝐶) ∈ ℕ0)
42 zexpcl 13725 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (𝐷𝐶) ∈ ℕ0) → (2↑(𝐷𝐶)) ∈ ℤ)
4337, 41, 42sylancr 586 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) ∈ ℤ)
4436, 43eqeltrrd 2840 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((2↑𝐷) / (2↑𝐶)) ∈ ℤ)
4544, 1zmulcld 12361 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · 𝐴) ∈ ℤ)
4630, 45eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
47 zltp1le 12300 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
489, 46, 47syl2anc 583 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
499zred 12355 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℝ)
5020, 24nndivred 11957 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ)
5127nnred 11918 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℝ)
5227nngt0d 11952 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 0 < (2↑𝐷))
53 ltdivmul2 11782 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5449, 50, 51, 52, 53syl112anc 1372 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
55 peano2re 11078 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5649, 55syl 17 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 + 1) ∈ ℝ)
57 ledivmul2 11784 . . . . . . . 8 (((𝐵 + 1) ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5856, 50, 51, 52, 57syl112anc 1372 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5948, 54, 583bitr4d 310 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))))
6049, 27nndivred 11957 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ)
6160rexrd 10956 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ*)
6256, 27nndivred 11957 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
6362rexrd 10956 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)
6450rexrd 10956 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ*)
65 peano2re 11078 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
6620, 65syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℝ)
6766, 24nndivred 11957 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
6867rexrd 10956 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
69 ioodisj 13143 . . . . . . . 8 (((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7069ex 412 . . . . . . 7 ((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7161, 63, 64, 68, 70syl22anc 835 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7259, 71sylbid 239 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7372imp 406 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7419, 73eqtrd 2778 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
75743mix3d 1336 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
7650adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ∈ ℝ)
7767adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
78 simprl 767 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)))
7966recnd 10934 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℂ)
8079, 25, 28, 29div13d 11705 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)))
811peano2zd 12358 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℤ)
8244, 81zmulcld 12361 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)) ∈ ℤ)
8380, 82eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
84 zltp1le 12300 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
859, 83, 84syl2anc 583 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
86 ltdivmul2 11782 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8749, 67, 51, 52, 86syl112anc 1372 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
88 ledivmul2 11784 . . . . . . . . . . 11 (((𝐵 + 1) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8956, 67, 51, 52, 88syl112anc 1372 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
9085, 87, 893bitr4d 310 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶))))
9190biimpa 476 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
9291adantrl 712 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
93 iccss 13076 . . . . . . 7 ((((𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9476, 77, 78, 92, 93syl22anc 835 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9512fveq2d 6760 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
96 df-ov 7258 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
9795, 96eqtr4di 2797 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
9897adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
995fveq2d 6760 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
100 df-ov 7258 . . . . . . . 8 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
10199, 100eqtr4di 2797 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
102101adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10394, 98, 1023sstr4d 3964 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)))
1041033mix2d 1335 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
105104anassrs 467 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
10616adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
107 ioodisj 13143 . . . . . . . . 9 (((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
108107ex 412 . . . . . . . 8 ((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
10964, 68, 61, 63, 108syl22anc 835 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
110109imp 406 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
111106, 110eqtrd 2778 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
1121113mix3d 1336 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
113112adantlr 711 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11460adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
11567adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
116105, 113, 114, 115ltlecasei 11013 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11775, 116, 60, 50ltlecasei 11013 1 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3o 1084   = wceq 1539  wcel 2108  wne 2942  cin 3882  wss 3883  c0 4253  cop 4564   class class class wbr 5070  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  (,)cioo 13008  [,]cicc 13011  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-ioo 13012  df-icc 13015  df-seq 13650  df-exp 13711
This theorem is referenced by:  dyaddisj  24665
  Copyright terms: Public domain W3C validator