MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Visualization version   GIF version

Theorem dyaddisjlem 25094
Description: Lemma for dyaddisj 25095. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisjlem ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℤ)
2 simplrl 776 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℕ0)
3 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
43dyadval 25091 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
51, 2, 4syl2anc 585 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
65fveq2d 6892 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
7 df-ov 7407 . . . . . . . 8 ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
86, 7eqtr4di 2791 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
9 simpllr 775 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℤ)
10 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℕ0)
113dyadval 25091 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
129, 10, 11syl2anc 585 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1312fveq2d 6892 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
14 df-ov 7407 . . . . . . . 8 ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1513, 14eqtr4di 2791 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))))
168, 15ineq12d 4212 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
17 incom 4200 . . . . . 6 (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
1816, 17eqtrdi 2789 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
1918adantr 482 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
201zred 12662 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℝ)
2120recnd 11238 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℂ)
22 2nn 12281 . . . . . . . . . . . 12 2 ∈ ℕ
23 nnexpcl 14036 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
2422, 2, 23sylancr 588 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℕ)
2524nncnd 12224 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℂ)
26 nnexpcl 14036 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
2722, 10, 26sylancr 588 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℕ)
2827nncnd 12224 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℂ)
2924nnne0d 12258 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ≠ 0)
3021, 25, 28, 29div13d 12010 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · 𝐴))
31 2cnd 12286 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ∈ ℂ)
32 2ne0 12312 . . . . . . . . . . . . 13 2 ≠ 0
3332a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ≠ 0)
342nn0zd 12580 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℤ)
3510nn0zd 12580 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℤ)
3631, 33, 34, 35expsubd 14118 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) = ((2↑𝐷) / (2↑𝐶)))
37 2z 12590 . . . . . . . . . . . 12 2 ∈ ℤ
38 simpr 486 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶𝐷)
39 znn0sub 12605 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4034, 35, 39syl2anc 585 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4138, 40mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐷𝐶) ∈ ℕ0)
42 zexpcl 14038 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (𝐷𝐶) ∈ ℕ0) → (2↑(𝐷𝐶)) ∈ ℤ)
4337, 41, 42sylancr 588 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) ∈ ℤ)
4436, 43eqeltrrd 2835 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((2↑𝐷) / (2↑𝐶)) ∈ ℤ)
4544, 1zmulcld 12668 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · 𝐴) ∈ ℤ)
4630, 45eqeltrd 2834 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
47 zltp1le 12608 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
489, 46, 47syl2anc 585 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
499zred 12662 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℝ)
5020, 24nndivred 12262 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ)
5127nnred 12223 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℝ)
5227nngt0d 12257 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 0 < (2↑𝐷))
53 ltdivmul2 12087 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5449, 50, 51, 52, 53syl112anc 1375 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
55 peano2re 11383 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5649, 55syl 17 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 + 1) ∈ ℝ)
57 ledivmul2 12089 . . . . . . . 8 (((𝐵 + 1) ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5856, 50, 51, 52, 57syl112anc 1375 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5948, 54, 583bitr4d 311 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))))
6049, 27nndivred 12262 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ)
6160rexrd 11260 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ*)
6256, 27nndivred 12262 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
6362rexrd 11260 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)
6450rexrd 11260 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ*)
65 peano2re 11383 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
6620, 65syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℝ)
6766, 24nndivred 12262 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
6867rexrd 11260 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
69 ioodisj 13455 . . . . . . . 8 (((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7069ex 414 . . . . . . 7 ((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7161, 63, 64, 68, 70syl22anc 838 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7259, 71sylbid 239 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7372imp 408 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7419, 73eqtrd 2773 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
75743mix3d 1339 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
7650adantr 482 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ∈ ℝ)
7767adantr 482 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
78 simprl 770 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)))
7966recnd 11238 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℂ)
8079, 25, 28, 29div13d 12010 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)))
811peano2zd 12665 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℤ)
8244, 81zmulcld 12668 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)) ∈ ℤ)
8380, 82eqeltrd 2834 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
84 zltp1le 12608 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
859, 83, 84syl2anc 585 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
86 ltdivmul2 12087 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8749, 67, 51, 52, 86syl112anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
88 ledivmul2 12089 . . . . . . . . . . 11 (((𝐵 + 1) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8956, 67, 51, 52, 88syl112anc 1375 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
9085, 87, 893bitr4d 311 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶))))
9190biimpa 478 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
9291adantrl 715 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
93 iccss 13388 . . . . . . 7 ((((𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9476, 77, 78, 92, 93syl22anc 838 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9512fveq2d 6892 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
96 df-ov 7407 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
9795, 96eqtr4di 2791 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
9897adantr 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
995fveq2d 6892 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
100 df-ov 7407 . . . . . . . 8 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
10199, 100eqtr4di 2791 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
102101adantr 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10394, 98, 1023sstr4d 4028 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)))
1041033mix2d 1338 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
105104anassrs 469 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
10616adantr 482 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
107 ioodisj 13455 . . . . . . . . 9 (((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
108107ex 414 . . . . . . . 8 ((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
10964, 68, 61, 63, 108syl22anc 838 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
110109imp 408 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
111106, 110eqtrd 2773 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
1121113mix3d 1339 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
113112adantlr 714 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11460adantr 482 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
11567adantr 482 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
116105, 113, 114, 115ltlecasei 11318 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11775, 116, 60, 50ltlecasei 11318 1 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3o 1087   = wceq 1542  wcel 2107  wne 2941  cin 3946  wss 3947  c0 4321  cop 4633   class class class wbr 5147  cfv 6540  (class class class)co 7404  cmpo 7406  cr 11105  0cc0 11106  1c1 11107   + caddc 11109   · cmul 11111  *cxr 11243   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  cn 12208  2c2 12263  0cn0 12468  cz 12554  (,)cioo 13320  [,]cicc 13323  cexp 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-ioo 13324  df-icc 13327  df-seq 13963  df-exp 14024
This theorem is referenced by:  dyaddisj  25095
  Copyright terms: Public domain W3C validator