MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Visualization version   GIF version

Theorem dyaddisjlem 24759
Description: Lemma for dyaddisj 24760. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisjlem ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 772 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℤ)
2 simplrl 774 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℕ0)
3 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
43dyadval 24756 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
51, 2, 4syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
65fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
7 df-ov 7278 . . . . . . . 8 ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
86, 7eqtr4di 2796 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
9 simpllr 773 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℤ)
10 simplrr 775 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℕ0)
113dyadval 24756 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
129, 10, 11syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1312fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
14 df-ov 7278 . . . . . . . 8 ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1513, 14eqtr4di 2796 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))))
168, 15ineq12d 4147 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
17 incom 4135 . . . . . 6 (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
1816, 17eqtrdi 2794 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
1918adantr 481 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
201zred 12426 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℝ)
2120recnd 11003 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℂ)
22 2nn 12046 . . . . . . . . . . . 12 2 ∈ ℕ
23 nnexpcl 13795 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
2422, 2, 23sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℕ)
2524nncnd 11989 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℂ)
26 nnexpcl 13795 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
2722, 10, 26sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℕ)
2827nncnd 11989 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℂ)
2924nnne0d 12023 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ≠ 0)
3021, 25, 28, 29div13d 11775 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · 𝐴))
31 2cnd 12051 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ∈ ℂ)
32 2ne0 12077 . . . . . . . . . . . . 13 2 ≠ 0
3332a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ≠ 0)
342nn0zd 12424 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℤ)
3510nn0zd 12424 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℤ)
3631, 33, 34, 35expsubd 13875 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) = ((2↑𝐷) / (2↑𝐶)))
37 2z 12352 . . . . . . . . . . . 12 2 ∈ ℤ
38 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶𝐷)
39 znn0sub 12367 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4034, 35, 39syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4138, 40mpbid 231 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐷𝐶) ∈ ℕ0)
42 zexpcl 13797 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (𝐷𝐶) ∈ ℕ0) → (2↑(𝐷𝐶)) ∈ ℤ)
4337, 41, 42sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) ∈ ℤ)
4436, 43eqeltrrd 2840 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((2↑𝐷) / (2↑𝐶)) ∈ ℤ)
4544, 1zmulcld 12432 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · 𝐴) ∈ ℤ)
4630, 45eqeltrd 2839 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
47 zltp1le 12370 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
489, 46, 47syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
499zred 12426 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℝ)
5020, 24nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ)
5127nnred 11988 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℝ)
5227nngt0d 12022 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 0 < (2↑𝐷))
53 ltdivmul2 11852 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5449, 50, 51, 52, 53syl112anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
55 peano2re 11148 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5649, 55syl 17 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 + 1) ∈ ℝ)
57 ledivmul2 11854 . . . . . . . 8 (((𝐵 + 1) ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5856, 50, 51, 52, 57syl112anc 1373 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5948, 54, 583bitr4d 311 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))))
6049, 27nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ)
6160rexrd 11025 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ*)
6256, 27nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
6362rexrd 11025 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)
6450rexrd 11025 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ*)
65 peano2re 11148 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
6620, 65syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℝ)
6766, 24nndivred 12027 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
6867rexrd 11025 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
69 ioodisj 13214 . . . . . . . 8 (((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7069ex 413 . . . . . . 7 ((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7161, 63, 64, 68, 70syl22anc 836 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7259, 71sylbid 239 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7372imp 407 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7419, 73eqtrd 2778 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
75743mix3d 1337 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
7650adantr 481 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ∈ ℝ)
7767adantr 481 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
78 simprl 768 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)))
7966recnd 11003 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℂ)
8079, 25, 28, 29div13d 11775 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)))
811peano2zd 12429 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℤ)
8244, 81zmulcld 12432 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)) ∈ ℤ)
8380, 82eqeltrd 2839 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
84 zltp1le 12370 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
859, 83, 84syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
86 ltdivmul2 11852 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8749, 67, 51, 52, 86syl112anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
88 ledivmul2 11854 . . . . . . . . . . 11 (((𝐵 + 1) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8956, 67, 51, 52, 88syl112anc 1373 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
9085, 87, 893bitr4d 311 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶))))
9190biimpa 477 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
9291adantrl 713 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
93 iccss 13147 . . . . . . 7 ((((𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9476, 77, 78, 92, 93syl22anc 836 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9512fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
96 df-ov 7278 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
9795, 96eqtr4di 2796 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
9897adantr 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
995fveq2d 6778 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
100 df-ov 7278 . . . . . . . 8 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
10199, 100eqtr4di 2796 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
102101adantr 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10394, 98, 1023sstr4d 3968 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)))
1041033mix2d 1336 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
105104anassrs 468 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
10616adantr 481 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
107 ioodisj 13214 . . . . . . . . 9 (((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
108107ex 413 . . . . . . . 8 ((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
10964, 68, 61, 63, 108syl22anc 836 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
110109imp 407 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
111106, 110eqtrd 2778 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
1121113mix3d 1337 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
113112adantlr 712 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11460adantr 481 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
11567adantr 481 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
116105, 113, 114, 115ltlecasei 11083 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11775, 116, 60, 50ltlecasei 11083 1 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3o 1085   = wceq 1539  wcel 2106  wne 2943  cin 3886  wss 3887  c0 4256  cop 4567   class class class wbr 5074  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  *cxr 11008   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  (,)cioo 13079  [,]cicc 13082  cexp 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-ioo 13083  df-icc 13086  df-seq 13722  df-exp 13783
This theorem is referenced by:  dyaddisj  24760
  Copyright terms: Public domain W3C validator