MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dyaddisjlem Structured version   Visualization version   GIF version

Theorem dyaddisjlem 25529
Description: Lemma for dyaddisj 25530. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypothesis
Ref Expression
dyadmbl.1 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
Assertion
Ref Expression
dyaddisjlem ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐴,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dyaddisjlem
StepHypRef Expression
1 simplll 774 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℤ)
2 simplrl 776 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℕ0)
3 dyadmbl.1 . . . . . . . . . . 11 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ ⟨(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))⟩)
43dyadval 25526 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
51, 2, 4syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴𝐹𝐶) = ⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
65fveq2d 6844 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
7 df-ov 7372 . . . . . . . 8 ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) = ((,)‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
86, 7eqtr4di 2782 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
9 simpllr 775 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℤ)
10 simplrr 777 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℕ0)
113dyadval 25526 . . . . . . . . . 10 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℕ0) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
129, 10, 11syl2anc 584 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵𝐹𝐷) = ⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1312fveq2d 6844 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
14 df-ov 7372 . . . . . . . 8 ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) = ((,)‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
1513, 14eqtr4di 2782 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((,)‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))))
168, 15ineq12d 4180 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
17 incom 4168 . . . . . 6 (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))))
1816, 17eqtrdi 2780 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
1918adantr 480 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))))
201zred 12614 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℝ)
2120recnd 11178 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐴 ∈ ℂ)
22 2nn 12235 . . . . . . . . . . . 12 2 ∈ ℕ
23 nnexpcl 14015 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐶 ∈ ℕ0) → (2↑𝐶) ∈ ℕ)
2422, 2, 23sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℕ)
2524nncnd 12178 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ∈ ℂ)
26 nnexpcl 14015 . . . . . . . . . . . 12 ((2 ∈ ℕ ∧ 𝐷 ∈ ℕ0) → (2↑𝐷) ∈ ℕ)
2722, 10, 26sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℕ)
2827nncnd 12178 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℂ)
2924nnne0d 12212 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐶) ≠ 0)
3021, 25, 28, 29div13d 11958 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · 𝐴))
31 2cnd 12240 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ∈ ℂ)
32 2ne0 12266 . . . . . . . . . . . . 13 2 ≠ 0
3332a1i 11 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 2 ≠ 0)
342nn0zd 12531 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶 ∈ ℤ)
3510nn0zd 12531 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐷 ∈ ℤ)
3631, 33, 34, 35expsubd 14098 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) = ((2↑𝐷) / (2↑𝐶)))
37 2z 12541 . . . . . . . . . . . 12 2 ∈ ℤ
38 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐶𝐷)
39 znn0sub 12556 . . . . . . . . . . . . . 14 ((𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4034, 35, 39syl2anc 584 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐶𝐷 ↔ (𝐷𝐶) ∈ ℕ0))
4138, 40mpbid 232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐷𝐶) ∈ ℕ0)
42 zexpcl 14017 . . . . . . . . . . . 12 ((2 ∈ ℤ ∧ (𝐷𝐶) ∈ ℕ0) → (2↑(𝐷𝐶)) ∈ ℤ)
4337, 41, 42sylancr 587 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑(𝐷𝐶)) ∈ ℤ)
4436, 43eqeltrrd 2829 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((2↑𝐷) / (2↑𝐶)) ∈ ℤ)
4544, 1zmulcld 12620 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · 𝐴) ∈ ℤ)
4630, 45eqeltrd 2828 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
47 zltp1le 12559 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
489, 46, 47syl2anc 584 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
499zred 12614 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 𝐵 ∈ ℝ)
5020, 24nndivred 12216 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ)
5127nnred 12177 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (2↑𝐷) ∈ ℝ)
5227nngt0d 12211 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → 0 < (2↑𝐷))
53 ltdivmul2 12036 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5449, 50, 51, 52, 53syl112anc 1376 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ 𝐵 < ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
55 peano2re 11323 . . . . . . . . 9 (𝐵 ∈ ℝ → (𝐵 + 1) ∈ ℝ)
5649, 55syl 17 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 + 1) ∈ ℝ)
57 ledivmul2 12038 . . . . . . . 8 (((𝐵 + 1) ∈ ℝ ∧ (𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5856, 50, 51, 52, 57syl112anc 1376 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) ↔ (𝐵 + 1) ≤ ((𝐴 / (2↑𝐶)) · (2↑𝐷))))
5948, 54, 583bitr4d 311 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))))
6049, 27nndivred 12216 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ)
6160rexrd 11200 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 / (2↑𝐷)) ∈ ℝ*)
6256, 27nndivred 12216 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ)
6362rexrd 11200 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)
6450rexrd 11200 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 / (2↑𝐶)) ∈ ℝ*)
65 peano2re 11323 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
6620, 65syl 17 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℝ)
6766, 24nndivred 12216 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
6867rexrd 11200 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)
69 ioodisj 13419 . . . . . . . 8 (((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7069ex 412 . . . . . . 7 ((((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*) ∧ ((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*)) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7161, 63, 64, 68, 70syl22anc 838 . . . . . 6 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7259, 71sylbid 240 . . . . 5 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶)) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅))
7372imp 406 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷))) ∩ ((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶)))) = ∅)
7419, 73eqtrd 2764 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
75743mix3d 1339 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < (𝐴 / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
7650adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ∈ ℝ)
7767adantr 480 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
78 simprl 770 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)))
7966recnd 11178 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℂ)
8079, 25, 28, 29div13d 11958 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) = (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)))
811peano2zd 12617 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐴 + 1) ∈ ℤ)
8244, 81zmulcld 12620 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((2↑𝐷) / (2↑𝐶)) · (𝐴 + 1)) ∈ ℤ)
8380, 82eqeltrd 2828 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ)
84 zltp1le 12559 . . . . . . . . . . 11 ((𝐵 ∈ ℤ ∧ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ∈ ℤ) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
859, 83, 84syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
86 ltdivmul2 12036 . . . . . . . . . . 11 ((𝐵 ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8749, 67, 51, 52, 86syl112anc 1376 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ 𝐵 < (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
88 ledivmul2 12038 . . . . . . . . . . 11 (((𝐵 + 1) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ ∧ ((2↑𝐷) ∈ ℝ ∧ 0 < (2↑𝐷))) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
8956, 67, 51, 52, 88syl112anc 1376 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)) ↔ (𝐵 + 1) ≤ (((𝐴 + 1) / (2↑𝐶)) · (2↑𝐷))))
9085, 87, 893bitr4d 311 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ((𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)) ↔ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶))))
9190biimpa 476 . . . . . . . 8 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
9291adantrl 716 . . . . . . 7 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))
93 iccss 13351 . . . . . . 7 ((((𝐴 / (2↑𝐶)) ∈ ℝ ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ ((𝐵 + 1) / (2↑𝐷)) ≤ ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9476, 77, 78, 92, 93syl22anc 838 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) ⊆ ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
9512fveq2d 6844 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩))
96 df-ov 7372 . . . . . . . 8 ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))) = ([,]‘⟨(𝐵 / (2↑𝐷)), ((𝐵 + 1) / (2↑𝐷))⟩)
9795, 96eqtr4di 2782 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
9897adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) = ((𝐵 / (2↑𝐷))[,]((𝐵 + 1) / (2↑𝐷))))
995fveq2d 6844 . . . . . . . 8 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩))
100 df-ov 7372 . . . . . . . 8 ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))) = ([,]‘⟨(𝐴 / (2↑𝐶)), ((𝐴 + 1) / (2↑𝐶))⟩)
10199, 100eqtr4di 2782 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
102101adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐴𝐹𝐶)) = ((𝐴 / (2↑𝐶))[,]((𝐴 + 1) / (2↑𝐶))))
10394, 98, 1023sstr4d 3999 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)))
1041033mix2d 1338 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶)))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
105104anassrs 467 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ (𝐵 / (2↑𝐷)) < ((𝐴 + 1) / (2↑𝐶))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
10616adantr 480 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))))
107 ioodisj 13419 . . . . . . . . 9 (((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
108107ex 412 . . . . . . . 8 ((((𝐴 / (2↑𝐶)) ∈ ℝ* ∧ ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ*) ∧ ((𝐵 / (2↑𝐷)) ∈ ℝ* ∧ ((𝐵 + 1) / (2↑𝐷)) ∈ ℝ*)) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
10964, 68, 61, 63, 108syl22anc 838 . . . . . . 7 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷)) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅))
110109imp 406 . . . . . 6 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((𝐴 / (2↑𝐶))(,)((𝐴 + 1) / (2↑𝐶))) ∩ ((𝐵 / (2↑𝐷))(,)((𝐵 + 1) / (2↑𝐷)))) = ∅)
111106, 110eqtrd 2764 . . . . 5 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)
1121113mix3d 1339 . . . 4 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
113112adantlr 715 . . 3 ((((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) ∧ ((𝐴 + 1) / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11460adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (𝐵 / (2↑𝐷)) ∈ ℝ)
11567adantr 480 . . 3 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → ((𝐴 + 1) / (2↑𝐶)) ∈ ℝ)
116105, 113, 114, 115ltlecasei 11258 . 2 (((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) ∧ (𝐴 / (2↑𝐶)) ≤ (𝐵 / (2↑𝐷))) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
11775, 116, 60, 50ltlecasei 11258 1 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℕ0)) ∧ 𝐶𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  cin 3910  wss 3911  c0 4292  cop 4591   class class class wbr 5102  cfv 6499  (class class class)co 7369  cmpo 7371  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  *cxr 11183   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  (,)cioo 13282  [,]cicc 13285  cexp 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-ioo 13286  df-icc 13289  df-seq 13943  df-exp 14003
This theorem is referenced by:  dyaddisj  25530
  Copyright terms: Public domain W3C validator