MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwncolg2 Structured version   Visualization version   GIF version

Theorem btwncolg2 26341
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
btwncolg2.z (𝜑𝑋 ∈ (𝑍𝐼𝑌))
Assertion
Ref Expression
btwncolg2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))

Proof of Theorem btwncolg2
StepHypRef Expression
1 btwncolg2.z . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
213mix2d 1333 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 tglngval.p . . 3 𝑃 = (Base‘𝐺)
4 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
5 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
6 tglngval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . 3 (𝜑𝑋𝑃)
8 tglngval.y . . 3 (𝜑𝑌𝑃)
9 tgcolg.z . . 3 (𝜑𝑍𝑃)
103, 4, 5, 6, 7, 8, 9tgcolg 26339 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
112, 10mpbird 259 1 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843  w3o 1082   = wceq 1533  wcel 2110  cfv 6354  (class class class)co 7155  Basecbs 16482  TarskiGcstrkg 26215  Itvcitv 26221  LineGclng 26222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6313  df-fun 6356  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-trkgc 26233  df-trkgcb 26235  df-trkg 26238
This theorem is referenced by:  tgdim01ln  26349  lnxfr  26351  tgbtwnconn1lem3  26359  tgbtwnconnln1  26365  tgbtwnconnln2  26366  tglineeltr  26416
  Copyright terms: Public domain W3C validator