MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwncolg2 Structured version   Visualization version   GIF version

Theorem btwncolg2 26917
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
btwncolg2.z (𝜑𝑋 ∈ (𝑍𝐼𝑌))
Assertion
Ref Expression
btwncolg2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))

Proof of Theorem btwncolg2
StepHypRef Expression
1 btwncolg2.z . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
213mix2d 1336 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 tglngval.p . . 3 𝑃 = (Base‘𝐺)
4 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
5 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
6 tglngval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . 3 (𝜑𝑋𝑃)
8 tglngval.y . . 3 (𝜑𝑌𝑃)
9 tgcolg.z . . 3 (𝜑𝑍𝑃)
103, 4, 5, 6, 7, 8, 9tgcolg 26915 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
112, 10mpbird 256 1 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844  w3o 1085   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-trkgc 26809  df-trkgcb 26811  df-trkg 26814
This theorem is referenced by:  tgdim01ln  26925  lnxfr  26927  tgbtwnconn1lem3  26935  tgbtwnconnln1  26941  tgbtwnconnln2  26942  tglineeltr  26992
  Copyright terms: Public domain W3C validator