MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  btwncolg2 Structured version   Visualization version   GIF version

Theorem btwncolg2 28501
Description: Betweenness implies colinearity. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tgcolg.z (𝜑𝑍𝑃)
btwncolg2.z (𝜑𝑋 ∈ (𝑍𝐼𝑌))
Assertion
Ref Expression
btwncolg2 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))

Proof of Theorem btwncolg2
StepHypRef Expression
1 btwncolg2.z . . 3 (𝜑𝑋 ∈ (𝑍𝐼𝑌))
213mix2d 1337 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍)))
3 tglngval.p . . 3 𝑃 = (Base‘𝐺)
4 tglngval.l . . 3 𝐿 = (LineG‘𝐺)
5 tglngval.i . . 3 𝐼 = (Itv‘𝐺)
6 tglngval.g . . 3 (𝜑𝐺 ∈ TarskiG)
7 tglngval.x . . 3 (𝜑𝑋𝑃)
8 tglngval.y . . 3 (𝜑𝑌𝑃)
9 tgcolg.z . . 3 (𝜑𝑍𝑃)
103, 4, 5, 6, 7, 8, 9tgcolg 28499 . 2 (𝜑 → ((𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌) ↔ (𝑍 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑍))))
112, 10mpbird 257 1 (𝜑 → (𝑍 ∈ (𝑋𝐿𝑌) ∨ 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  w3o 1085   = wceq 1539  wcel 2107  cfv 6541  (class class class)co 7413  Basecbs 17230  TarskiGcstrkg 28372  Itvcitv 28378  LineGclng 28379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-trkgc 28393  df-trkgcb 28395  df-trkg 28398
This theorem is referenced by:  tgdim01ln  28509  lnxfr  28511  tgbtwnconn1lem3  28519  tgbtwnconnln1  28525  tgbtwnconnln2  28526  tglineeltr  28576
  Copyright terms: Public domain W3C validator