Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetdmprc0 | Structured version Visualization version GIF version |
Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
Ref | Expression |
---|---|
fsetdmprc0 | ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3050 | . . . 4 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | vex 3436 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 Fn 𝐴) | |
5 | 3, 4 | fndmexd 7753 | . . . . 5 ⊢ (𝑔 Fn 𝐴 → 𝐴 ∈ V) |
6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴) |
7 | 1, 6 | sylbi 216 | . . 3 ⊢ (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴) |
8 | 7 | alrimiv 1930 | . 2 ⊢ (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴) |
9 | fneq1 6524 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
10 | 9 | ab0w 4307 | . 2 ⊢ ({𝑓 ∣ 𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴) |
11 | 8, 10 | sylibr 233 | 1 ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2106 {cab 2715 ∉ wnel 3049 Vcvv 3432 ∅c0 4256 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nel 3050 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 |
This theorem is referenced by: fsetexb 8652 |
Copyright terms: Public domain | W3C validator |