| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsetdmprc0 | Structured version Visualization version GIF version | ||
| Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| fsetdmprc0 | ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel 3046 | . . . 4 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
| 2 | vex 3483 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
| 3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 ∈ V) |
| 4 | id 22 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 Fn 𝐴) | |
| 5 | 3, 4 | fndmexd 7927 | . . . . 5 ⊢ (𝑔 Fn 𝐴 → 𝐴 ∈ V) |
| 6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴) |
| 7 | 1, 6 | sylbi 217 | . . 3 ⊢ (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴) |
| 8 | 7 | alrimiv 1926 | . 2 ⊢ (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴) |
| 9 | fneq1 6658 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
| 10 | 9 | ab0w 4378 | . 2 ⊢ ({𝑓 ∣ 𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴) |
| 11 | 8, 10 | sylibr 234 | 1 ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2107 {cab 2713 ∉ wnel 3045 Vcvv 3479 ∅c0 4332 Fn wfn 6555 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nel 3046 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-fun 6562 df-fn 6563 |
| This theorem is referenced by: fsetexb 8905 |
| Copyright terms: Public domain | W3C validator |