MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetdmprc0 Structured version   Visualization version   GIF version

Theorem fsetdmprc0 8849
Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.)
Assertion
Ref Expression
fsetdmprc0 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
Distinct variable group:   𝐴,𝑓

Proof of Theorem fsetdmprc0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3048 . . . 4 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 vex 3479 . . . . . . 7 𝑔 ∈ V
32a1i 11 . . . . . 6 (𝑔 Fn 𝐴𝑔 ∈ V)
4 id 22 . . . . . 6 (𝑔 Fn 𝐴𝑔 Fn 𝐴)
53, 4fndmexd 7897 . . . . 5 (𝑔 Fn 𝐴𝐴 ∈ V)
65con3i 154 . . . 4 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴)
71, 6sylbi 216 . . 3 (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴)
87alrimiv 1931 . 2 (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴)
9 fneq1 6641 . . 3 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
109ab0w 4374 . 2 ({𝑓𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴)
118, 10sylibr 233 1 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wnel 3047  Vcvv 3475  c0 4323   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nel 3048  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547
This theorem is referenced by:  fsetexb  8858
  Copyright terms: Public domain W3C validator