Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsetdmprc0 | Structured version Visualization version GIF version |
Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
Ref | Expression |
---|---|
fsetdmprc0 | ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3049 | . . . 4 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | vex 3426 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 Fn 𝐴) | |
5 | 3, 4 | fndmexd 7727 | . . . . 5 ⊢ (𝑔 Fn 𝐴 → 𝐴 ∈ V) |
6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴) |
7 | 1, 6 | sylbi 216 | . . 3 ⊢ (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴) |
8 | 7 | alrimiv 1931 | . 2 ⊢ (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴) |
9 | fneq1 6508 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
10 | 9 | ab0w 4304 | . 2 ⊢ ({𝑓 ∣ 𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴) |
11 | 8, 10 | sylibr 233 | 1 ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∉ wnel 3048 Vcvv 3422 ∅c0 4253 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nel 3049 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 |
This theorem is referenced by: fsetexb 8610 |
Copyright terms: Public domain | W3C validator |