![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsetdmprc0 | Structured version Visualization version GIF version |
Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.) |
Ref | Expression |
---|---|
fsetdmprc0 | ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3045 | . . . 4 ⊢ (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V) | |
2 | vex 3482 | . . . . . . 7 ⊢ 𝑔 ∈ V | |
3 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 ∈ V) |
4 | id 22 | . . . . . 6 ⊢ (𝑔 Fn 𝐴 → 𝑔 Fn 𝐴) | |
5 | 3, 4 | fndmexd 7927 | . . . . 5 ⊢ (𝑔 Fn 𝐴 → 𝐴 ∈ V) |
6 | 5 | con3i 154 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴) |
7 | 1, 6 | sylbi 217 | . . 3 ⊢ (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴) |
8 | 7 | alrimiv 1925 | . 2 ⊢ (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴) |
9 | fneq1 6660 | . . 3 ⊢ (𝑓 = 𝑔 → (𝑓 Fn 𝐴 ↔ 𝑔 Fn 𝐴)) | |
10 | 9 | ab0w 4385 | . 2 ⊢ ({𝑓 ∣ 𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴) |
11 | 8, 10 | sylibr 234 | 1 ⊢ (𝐴 ∉ V → {𝑓 ∣ 𝑓 Fn 𝐴} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 ∉ wnel 3044 Vcvv 3478 ∅c0 4339 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nel 3045 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-fun 6565 df-fn 6566 |
This theorem is referenced by: fsetexb 8903 |
Copyright terms: Public domain | W3C validator |