MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetdmprc0 Structured version   Visualization version   GIF version

Theorem fsetdmprc0 8779
Description: The set of functions with a proper class as domain is empty. (Contributed by AV, 22-Aug-2024.)
Assertion
Ref Expression
fsetdmprc0 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
Distinct variable group:   𝐴,𝑓

Proof of Theorem fsetdmprc0
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 df-nel 3033 . . . 4 (𝐴 ∉ V ↔ ¬ 𝐴 ∈ V)
2 vex 3440 . . . . . . 7 𝑔 ∈ V
32a1i 11 . . . . . 6 (𝑔 Fn 𝐴𝑔 ∈ V)
4 id 22 . . . . . 6 (𝑔 Fn 𝐴𝑔 Fn 𝐴)
53, 4fndmexd 7834 . . . . 5 (𝑔 Fn 𝐴𝐴 ∈ V)
65con3i 154 . . . 4 𝐴 ∈ V → ¬ 𝑔 Fn 𝐴)
71, 6sylbi 217 . . 3 (𝐴 ∉ V → ¬ 𝑔 Fn 𝐴)
87alrimiv 1928 . 2 (𝐴 ∉ V → ∀𝑔 ¬ 𝑔 Fn 𝐴)
9 fneq1 6572 . . 3 (𝑓 = 𝑔 → (𝑓 Fn 𝐴𝑔 Fn 𝐴))
109ab0w 4329 . 2 ({𝑓𝑓 Fn 𝐴} = ∅ ↔ ∀𝑔 ¬ 𝑔 Fn 𝐴)
118, 10sylibr 234 1 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wnel 3032  Vcvv 3436  c0 4283   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nel 3033  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-fun 6483  df-fn 6484
This theorem is referenced by:  fsetexb  8788
  Copyright terms: Public domain W3C validator