Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acongeq12d | Structured version Visualization version GIF version |
Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
Ref | Expression |
---|---|
acongeq12d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
acongeq12d.2 | ⊢ (𝜑 → 𝐷 = 𝐸) |
Ref | Expression |
---|---|
acongeq12d | ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acongeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | acongeq12d.2 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝐸) | |
3 | 1, 2 | oveq12d 7273 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐶 − 𝐸)) |
4 | 3 | breq2d 5082 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − 𝐷) ↔ 𝐴 ∥ (𝐶 − 𝐸))) |
5 | 2 | negeqd 11145 | . . . 4 ⊢ (𝜑 → -𝐷 = -𝐸) |
6 | 1, 5 | oveq12d 7273 | . . 3 ⊢ (𝜑 → (𝐵 − -𝐷) = (𝐶 − -𝐸)) |
7 | 6 | breq2d 5082 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − -𝐷) ↔ 𝐴 ∥ (𝐶 − -𝐸))) |
8 | 4, 7 | orbi12d 915 | 1 ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 843 = wceq 1539 class class class wbr 5070 (class class class)co 7255 − cmin 11135 -cneg 11136 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-neg 11138 |
This theorem is referenced by: acongrep 40718 jm2.26a 40738 jm2.26 40740 |
Copyright terms: Public domain | W3C validator |