| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > acongeq12d | Structured version Visualization version GIF version | ||
| Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| acongeq12d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| acongeq12d.2 | ⊢ (𝜑 → 𝐷 = 𝐸) |
| Ref | Expression |
|---|---|
| acongeq12d | ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acongeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 2 | acongeq12d.2 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝐸) | |
| 3 | 1, 2 | oveq12d 7372 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐶 − 𝐸)) |
| 4 | 3 | breq2d 5107 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − 𝐷) ↔ 𝐴 ∥ (𝐶 − 𝐸))) |
| 5 | 2 | negeqd 11363 | . . . 4 ⊢ (𝜑 → -𝐷 = -𝐸) |
| 6 | 1, 5 | oveq12d 7372 | . . 3 ⊢ (𝜑 → (𝐵 − -𝐷) = (𝐶 − -𝐸)) |
| 7 | 6 | breq2d 5107 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − -𝐷) ↔ 𝐴 ∥ (𝐶 − -𝐸))) |
| 8 | 4, 7 | orbi12d 918 | 1 ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1541 class class class wbr 5095 (class class class)co 7354 − cmin 11353 -cneg 11354 ∥ cdvds 16167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-neg 11356 |
| This theorem is referenced by: acongrep 43100 jm2.26a 43120 jm2.26 43122 |
| Copyright terms: Public domain | W3C validator |