Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongeq12d Structured version   Visualization version   GIF version

Theorem acongeq12d 42968
Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.)
Hypotheses
Ref Expression
acongeq12d.1 (𝜑𝐵 = 𝐶)
acongeq12d.2 (𝜑𝐷 = 𝐸)
Assertion
Ref Expression
acongeq12d (𝜑 → ((𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸))))

Proof of Theorem acongeq12d
StepHypRef Expression
1 acongeq12d.1 . . . 4 (𝜑𝐵 = 𝐶)
2 acongeq12d.2 . . . 4 (𝜑𝐷 = 𝐸)
31, 2oveq12d 7405 . . 3 (𝜑 → (𝐵𝐷) = (𝐶𝐸))
43breq2d 5119 . 2 (𝜑 → (𝐴 ∥ (𝐵𝐷) ↔ 𝐴 ∥ (𝐶𝐸)))
52negeqd 11415 . . . 4 (𝜑 → -𝐷 = -𝐸)
61, 5oveq12d 7405 . . 3 (𝜑 → (𝐵 − -𝐷) = (𝐶 − -𝐸))
76breq2d 5119 . 2 (𝜑 → (𝐴 ∥ (𝐵 − -𝐷) ↔ 𝐴 ∥ (𝐶 − -𝐸)))
84, 7orbi12d 918 1 (𝜑 → ((𝐴 ∥ (𝐵𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847   = wceq 1540   class class class wbr 5107  (class class class)co 7387  cmin 11405  -cneg 11406  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fv 6519  df-ov 7390  df-neg 11408
This theorem is referenced by:  acongrep  42969  jm2.26a  42989  jm2.26  42991
  Copyright terms: Public domain W3C validator