Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > acongeq12d | Structured version Visualization version GIF version |
Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
Ref | Expression |
---|---|
acongeq12d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
acongeq12d.2 | ⊢ (𝜑 → 𝐷 = 𝐸) |
Ref | Expression |
---|---|
acongeq12d | ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acongeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | acongeq12d.2 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝐸) | |
3 | 1, 2 | oveq12d 7293 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐶 − 𝐸)) |
4 | 3 | breq2d 5086 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − 𝐷) ↔ 𝐴 ∥ (𝐶 − 𝐸))) |
5 | 2 | negeqd 11215 | . . . 4 ⊢ (𝜑 → -𝐷 = -𝐸) |
6 | 1, 5 | oveq12d 7293 | . . 3 ⊢ (𝜑 → (𝐵 − -𝐷) = (𝐶 − -𝐸)) |
7 | 6 | breq2d 5086 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − -𝐷) ↔ 𝐴 ∥ (𝐶 − -𝐸))) |
8 | 4, 7 | orbi12d 916 | 1 ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1539 class class class wbr 5074 (class class class)co 7275 − cmin 11205 -cneg 11206 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-neg 11208 |
This theorem is referenced by: acongrep 40802 jm2.26a 40822 jm2.26 40824 |
Copyright terms: Public domain | W3C validator |