![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > acongeq12d | Structured version Visualization version GIF version |
Description: Substitution deduction for alternating congruence. (Contributed by Stefan O'Rear, 3-Oct-2014.) |
Ref | Expression |
---|---|
acongeq12d.1 | ⊢ (𝜑 → 𝐵 = 𝐶) |
acongeq12d.2 | ⊢ (𝜑 → 𝐷 = 𝐸) |
Ref | Expression |
---|---|
acongeq12d | ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acongeq12d.1 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝐶) | |
2 | acongeq12d.2 | . . . 4 ⊢ (𝜑 → 𝐷 = 𝐸) | |
3 | 1, 2 | oveq12d 7423 | . . 3 ⊢ (𝜑 → (𝐵 − 𝐷) = (𝐶 − 𝐸)) |
4 | 3 | breq2d 5153 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − 𝐷) ↔ 𝐴 ∥ (𝐶 − 𝐸))) |
5 | 2 | negeqd 11458 | . . . 4 ⊢ (𝜑 → -𝐷 = -𝐸) |
6 | 1, 5 | oveq12d 7423 | . . 3 ⊢ (𝜑 → (𝐵 − -𝐷) = (𝐶 − -𝐸)) |
7 | 6 | breq2d 5153 | . 2 ⊢ (𝜑 → (𝐴 ∥ (𝐵 − -𝐷) ↔ 𝐴 ∥ (𝐶 − -𝐸))) |
8 | 4, 7 | orbi12d 915 | 1 ⊢ (𝜑 → ((𝐴 ∥ (𝐵 − 𝐷) ∨ 𝐴 ∥ (𝐵 − -𝐷)) ↔ (𝐴 ∥ (𝐶 − 𝐸) ∨ 𝐴 ∥ (𝐶 − -𝐸)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∨ wo 844 = wceq 1533 class class class wbr 5141 (class class class)co 7405 − cmin 11448 -cneg 11449 ∥ cdvds 16204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-iota 6489 df-fv 6545 df-ov 7408 df-neg 11451 |
This theorem is referenced by: acongrep 42302 jm2.26a 42322 jm2.26 42324 |
Copyright terms: Public domain | W3C validator |