Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Visualization version   GIF version

Theorem jm2.26 42990
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))

Proof of Theorem jm2.26
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 42968 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
21ad2ant2l 746 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
3 acongrep 42968 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
43ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
5 2z 12646 . . . . . . . . . . 11 2 ∈ ℤ
6 simpl1l 1223 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ))
7 nnz 12631 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
87adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
96, 8syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑁 ∈ ℤ)
10 zmulcl 12663 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
115, 9, 10sylancr 587 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (2 · 𝑁) ∈ ℤ)
12 simplrl 777 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
13123ad2antl1 1184 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
14 simpl3l 1227 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ (0...𝑁))
1514elfzelzd 13561 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ ℤ)
16 simplrr 778 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
17163ad2antl1 1184 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
18 simpl2r 1226 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
19 simpl2l 1225 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ (0...𝑁))
20 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
21203ad2antl1 1184 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
22 frmx 42901 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
2322fovcl 7560 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2423nn0zd 12636 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
2521, 9, 24syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Xrm 𝑁) ∈ ℤ)
2619elfzelzd 13561 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ ℤ)
27 frmy 42902 . . . . . . . . . . . . . . . . 17 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2827fovcl 7560 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℤ) → (𝐴 Yrm 𝑘) ∈ ℤ)
2921, 26, 28syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑘) ∈ ℤ)
3027fovcl 7560 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3121, 17, 30syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑀) ∈ ℤ)
3227fovcl 7560 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℤ) → (𝐴 Yrm 𝑚) ∈ ℤ)
3321, 15, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑚) ∈ ℤ)
3427fovcl 7560 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
3521, 13, 34syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝐾) ∈ ℤ)
36 jm2.26a 42988 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3721, 9, 26, 13, 36syl22anc 839 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3818, 37mpd 15 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))))
39 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
40 acongtr 42966 . . . . . . . . . . . . . . . 16 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
4125, 29, 35, 31, 38, 39, 40syl222anc 1385 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
42 simpl3r 1228 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
43 acongsym 42964 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
4411, 15, 17, 42, 43syl31anc 1372 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
45 jm2.26a 42988 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4621, 9, 17, 15, 45syl22anc 839 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4744, 46mpd 15 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))
48 acongtr 42966 . . . . . . . . . . . . . . 15 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑚) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
4925, 29, 31, 33, 41, 47, 48syl222anc 1385 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
50 jm2.26lem3 42989 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚)))) → 𝑘 = 𝑚)
516, 19, 14, 49, 50syl121anc 1374 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 = 𝑚)
52 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝑘 = 𝑚)
53 eqidd 2735 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐾 = 𝐾)
5452, 53acongeq12d 42967 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5551, 54syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5618, 55mpbid 232 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾)))
57 acongsym 42964 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
5811, 15, 13, 56, 57syl31anc 1372 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
59 acongtr 42966 . . . . . . . . . 10 ((((2 · 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
6011, 13, 15, 17, 58, 42, 59syl222anc 1385 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
61603exp1 1351 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6261expd 415 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑘 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))))
6362rexlimdv 3150 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
644, 63mpd 15 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
6564expd 415 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑚 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6665rexlimdv 3150 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
672, 66mpd 15 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
68 jm2.26a 42988 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
697, 68sylanl2 681 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
7067, 69impbid 212 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2105  wrex 3067   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152   · cmul 11157  cmin 11489  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  ...cfz 13543  cdvds 16286   Xrm crmx 42887   Yrm crmy 42888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-omul 8509  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-acn 9979  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-dvds 16287  df-gcd 16528  df-numer 16768  df-denom 16769  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916  df-log 26612  df-squarenn 42828  df-pell1qr 42829  df-pell14qr 42830  df-pell1234qr 42831  df-pellfund 42832  df-rmx 42889  df-rmy 42890
This theorem is referenced by:  jm2.27a  42993
  Copyright terms: Public domain W3C validator