Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Visualization version   GIF version

Theorem jm2.26 40819
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))

Proof of Theorem jm2.26
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 40797 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
21ad2ant2l 743 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
3 acongrep 40797 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
43ad2ant2lr 745 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
5 2z 12350 . . . . . . . . . . 11 2 ∈ ℤ
6 simpl1l 1223 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ))
7 nnz 12340 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
87adantl 482 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
96, 8syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑁 ∈ ℤ)
10 zmulcl 12367 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
115, 9, 10sylancr 587 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (2 · 𝑁) ∈ ℤ)
12 simplrl 774 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
13123ad2antl1 1184 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
14 simpl3l 1227 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ (0...𝑁))
1514elfzelzd 13254 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ ℤ)
16 simplrr 775 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
17163ad2antl1 1184 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
18 simpl2r 1226 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
19 simpl2l 1225 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ (0...𝑁))
20 simplll 772 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
21203ad2antl1 1184 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
22 frmx 40730 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
2322fovcl 7394 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2423nn0zd 12421 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
2521, 9, 24syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Xrm 𝑁) ∈ ℤ)
2619elfzelzd 13254 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ ℤ)
27 frmy 40731 . . . . . . . . . . . . . . . . 17 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2827fovcl 7394 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℤ) → (𝐴 Yrm 𝑘) ∈ ℤ)
2921, 26, 28syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑘) ∈ ℤ)
3027fovcl 7394 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3121, 17, 30syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑀) ∈ ℤ)
3227fovcl 7394 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℤ) → (𝐴 Yrm 𝑚) ∈ ℤ)
3321, 15, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑚) ∈ ℤ)
3427fovcl 7394 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
3521, 13, 34syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝐾) ∈ ℤ)
36 jm2.26a 40817 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3721, 9, 26, 13, 36syl22anc 836 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3818, 37mpd 15 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))))
39 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
40 acongtr 40795 . . . . . . . . . . . . . . . 16 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
4125, 29, 35, 31, 38, 39, 40syl222anc 1385 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
42 simpl3r 1228 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
43 acongsym 40793 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
4411, 15, 17, 42, 43syl31anc 1372 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
45 jm2.26a 40817 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4621, 9, 17, 15, 45syl22anc 836 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4744, 46mpd 15 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))
48 acongtr 40795 . . . . . . . . . . . . . . 15 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑚) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
4925, 29, 31, 33, 41, 47, 48syl222anc 1385 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
50 jm2.26lem3 40818 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚)))) → 𝑘 = 𝑚)
516, 19, 14, 49, 50syl121anc 1374 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 = 𝑚)
52 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝑘 = 𝑚)
53 eqidd 2741 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐾 = 𝐾)
5452, 53acongeq12d 40796 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5551, 54syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5618, 55mpbid 231 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾)))
57 acongsym 40793 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
5811, 15, 13, 56, 57syl31anc 1372 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
59 acongtr 40795 . . . . . . . . . 10 ((((2 · 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
6011, 13, 15, 17, 58, 42, 59syl222anc 1385 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
61603exp1 1351 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6261expd 416 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑘 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))))
6362rexlimdv 3214 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
644, 63mpd 15 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
6564expd 416 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑚 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6665rexlimdv 3214 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
672, 66mpd 15 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
68 jm2.26a 40817 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
697, 68sylanl2 678 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
7067, 69impbid 211 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086  wcel 2110  wrex 3067   class class class wbr 5079  cfv 6431  (class class class)co 7269  0cc0 10870   · cmul 10875  cmin 11203  -cneg 11204  cn 11971  2c2 12026  0cn0 12231  cz 12317  cuz 12579  ...cfz 13236  cdvds 15959   Xrm crmx 40717   Yrm crmy 40718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9375  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-pre-sup 10948  ax-addf 10949  ax-mulf 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-supp 7967  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-2o 8287  df-oadd 8290  df-omul 8291  df-er 8479  df-map 8598  df-pm 8599  df-ixp 8667  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-fsupp 9105  df-fi 9146  df-sup 9177  df-inf 9178  df-oi 9245  df-card 9696  df-acn 9699  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-xnn0 12304  df-z 12318  df-dec 12435  df-uz 12580  df-q 12686  df-rp 12728  df-xneg 12845  df-xadd 12846  df-xmul 12847  df-ioo 13080  df-ioc 13081  df-ico 13082  df-icc 13083  df-fz 13237  df-fzo 13380  df-fl 13508  df-mod 13586  df-seq 13718  df-exp 13779  df-fac 13984  df-bc 14013  df-hash 14041  df-shft 14774  df-cj 14806  df-re 14807  df-im 14808  df-sqrt 14942  df-abs 14943  df-limsup 15176  df-clim 15193  df-rlim 15194  df-sum 15394  df-ef 15773  df-sin 15775  df-cos 15776  df-pi 15778  df-dvds 15960  df-gcd 16198  df-numer 16435  df-denom 16436  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-starv 16973  df-sca 16974  df-vsca 16975  df-ip 16976  df-tset 16977  df-ple 16978  df-ds 16980  df-unif 16981  df-hom 16982  df-cco 16983  df-rest 17129  df-topn 17130  df-0g 17148  df-gsum 17149  df-topgen 17150  df-pt 17151  df-prds 17154  df-xrs 17209  df-qtop 17214  df-imas 17215  df-xps 17217  df-mre 17291  df-mrc 17292  df-acs 17294  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-mulg 18697  df-cntz 18919  df-cmn 19384  df-psmet 20585  df-xmet 20586  df-met 20587  df-bl 20588  df-mopn 20589  df-fbas 20590  df-fg 20591  df-cnfld 20594  df-top 22039  df-topon 22056  df-topsp 22078  df-bases 22092  df-cld 22166  df-ntr 22167  df-cls 22168  df-nei 22245  df-lp 22283  df-perf 22284  df-cn 22374  df-cnp 22375  df-haus 22462  df-tx 22709  df-hmeo 22902  df-fil 22993  df-fm 23085  df-flim 23086  df-flf 23087  df-xms 23469  df-ms 23470  df-tms 23471  df-cncf 24037  df-limc 25026  df-dv 25027  df-log 25708  df-squarenn 40658  df-pell1qr 40659  df-pell14qr 40660  df-pell1234qr 40661  df-pellfund 40662  df-rmx 40719  df-rmy 40720
This theorem is referenced by:  jm2.27a  40822
  Copyright terms: Public domain W3C validator