Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Visualization version   GIF version

Theorem jm2.26 42958
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))

Proof of Theorem jm2.26
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 42936 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
21ad2ant2l 746 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
3 acongrep 42936 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
43ad2ant2lr 748 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
5 2z 12617 . . . . . . . . . . 11 2 ∈ ℤ
6 simpl1l 1224 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ))
7 nnz 12602 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
87adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
96, 8syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑁 ∈ ℤ)
10 zmulcl 12634 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
115, 9, 10sylancr 587 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (2 · 𝑁) ∈ ℤ)
12 simplrl 776 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
13123ad2antl1 1185 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
14 simpl3l 1228 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ (0...𝑁))
1514elfzelzd 13532 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ ℤ)
16 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
17163ad2antl1 1185 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
18 simpl2r 1227 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
19 simpl2l 1226 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ (0...𝑁))
20 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
21203ad2antl1 1185 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
22 frmx 42869 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
2322fovcl 7530 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2423nn0zd 12607 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
2521, 9, 24syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Xrm 𝑁) ∈ ℤ)
2619elfzelzd 13532 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ ℤ)
27 frmy 42870 . . . . . . . . . . . . . . . . 17 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2827fovcl 7530 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℤ) → (𝐴 Yrm 𝑘) ∈ ℤ)
2921, 26, 28syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑘) ∈ ℤ)
3027fovcl 7530 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3121, 17, 30syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑀) ∈ ℤ)
3227fovcl 7530 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℤ) → (𝐴 Yrm 𝑚) ∈ ℤ)
3321, 15, 32syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑚) ∈ ℤ)
3427fovcl 7530 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
3521, 13, 34syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝐾) ∈ ℤ)
36 jm2.26a 42956 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3721, 9, 26, 13, 36syl22anc 838 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3818, 37mpd 15 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))))
39 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
40 acongtr 42934 . . . . . . . . . . . . . . . 16 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
4125, 29, 35, 31, 38, 39, 40syl222anc 1387 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
42 simpl3r 1229 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
43 acongsym 42932 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
4411, 15, 17, 42, 43syl31anc 1374 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
45 jm2.26a 42956 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4621, 9, 17, 15, 45syl22anc 838 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4744, 46mpd 15 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))
48 acongtr 42934 . . . . . . . . . . . . . . 15 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑚) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
4925, 29, 31, 33, 41, 47, 48syl222anc 1387 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
50 jm2.26lem3 42957 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚)))) → 𝑘 = 𝑚)
516, 19, 14, 49, 50syl121anc 1376 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 = 𝑚)
52 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝑘 = 𝑚)
53 eqidd 2735 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐾 = 𝐾)
5452, 53acongeq12d 42935 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5551, 54syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5618, 55mpbid 232 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾)))
57 acongsym 42932 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
5811, 15, 13, 56, 57syl31anc 1374 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
59 acongtr 42934 . . . . . . . . . 10 ((((2 · 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
6011, 13, 15, 17, 58, 42, 59syl222anc 1387 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
61603exp1 1352 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6261expd 415 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑘 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))))
6362rexlimdv 3137 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
644, 63mpd 15 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
6564expd 415 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑚 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6665rexlimdv 3137 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
672, 66mpd 15 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
68 jm2.26a 42956 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
697, 68sylanl2 681 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
7067, 69impbid 212 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2107  wrex 3059   class class class wbr 5117  cfv 6528  (class class class)co 7400  0cc0 11122   · cmul 11127  cmin 11459  -cneg 11460  cn 12233  2c2 12288  0cn0 12494  cz 12581  cuz 12845  ...cfz 13514  cdvds 16259   Xrm crmx 42855   Yrm crmy 42856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200  ax-addf 11201
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-iin 4968  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-of 7666  df-om 7857  df-1st 7983  df-2nd 7984  df-supp 8155  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-2o 8476  df-oadd 8479  df-omul 8480  df-er 8714  df-map 8837  df-pm 8838  df-ixp 8907  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-fsupp 9369  df-fi 9418  df-sup 9449  df-inf 9450  df-oi 9517  df-card 9946  df-acn 9949  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-4 12298  df-5 12299  df-6 12300  df-7 12301  df-8 12302  df-9 12303  df-n0 12495  df-xnn0 12568  df-z 12582  df-dec 12702  df-uz 12846  df-q 12958  df-rp 13002  df-xneg 13121  df-xadd 13122  df-xmul 13123  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13662  df-fl 13799  df-mod 13877  df-seq 14010  df-exp 14070  df-fac 14282  df-bc 14311  df-hash 14339  df-shft 15075  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-limsup 15476  df-clim 15493  df-rlim 15494  df-sum 15692  df-ef 16072  df-sin 16074  df-cos 16075  df-pi 16077  df-dvds 16260  df-gcd 16501  df-numer 16741  df-denom 16742  df-struct 17153  df-sets 17170  df-slot 17188  df-ndx 17200  df-base 17216  df-ress 17239  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-rest 17423  df-topn 17424  df-0g 17442  df-gsum 17443  df-topgen 17444  df-pt 17445  df-prds 17448  df-xrs 17503  df-qtop 17508  df-imas 17509  df-xps 17511  df-mre 17585  df-mrc 17586  df-acs 17588  df-mgm 18605  df-sgrp 18684  df-mnd 18700  df-submnd 18749  df-mulg 19038  df-cntz 19287  df-cmn 19750  df-psmet 21294  df-xmet 21295  df-met 21296  df-bl 21297  df-mopn 21298  df-fbas 21299  df-fg 21300  df-cnfld 21303  df-top 22819  df-topon 22836  df-topsp 22858  df-bases 22871  df-cld 22944  df-ntr 22945  df-cls 22946  df-nei 23023  df-lp 23061  df-perf 23062  df-cn 23152  df-cnp 23153  df-haus 23240  df-tx 23487  df-hmeo 23680  df-fil 23771  df-fm 23863  df-flim 23864  df-flf 23865  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24809  df-limc 25806  df-dv 25807  df-log 26503  df-squarenn 42796  df-pell1qr 42797  df-pell14qr 42798  df-pell1234qr 42799  df-pellfund 42800  df-rmx 42857  df-rmy 42858
This theorem is referenced by:  jm2.27a  42961
  Copyright terms: Public domain W3C validator