Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Visualization version   GIF version

Theorem jm2.26 42959
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))

Proof of Theorem jm2.26
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 42937 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
21ad2ant2l 745 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
3 acongrep 42937 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
43ad2ant2lr 747 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
5 2z 12675 . . . . . . . . . . 11 2 ∈ ℤ
6 simpl1l 1224 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ))
7 nnz 12660 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
87adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
96, 8syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑁 ∈ ℤ)
10 zmulcl 12692 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
115, 9, 10sylancr 586 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (2 · 𝑁) ∈ ℤ)
12 simplrl 776 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
13123ad2antl1 1185 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
14 simpl3l 1228 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ (0...𝑁))
1514elfzelzd 13585 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ ℤ)
16 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
17163ad2antl1 1185 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
18 simpl2r 1227 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
19 simpl2l 1226 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ (0...𝑁))
20 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
21203ad2antl1 1185 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
22 frmx 42870 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
2322fovcl 7578 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2423nn0zd 12665 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
2521, 9, 24syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Xrm 𝑁) ∈ ℤ)
2619elfzelzd 13585 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ ℤ)
27 frmy 42871 . . . . . . . . . . . . . . . . 17 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2827fovcl 7578 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℤ) → (𝐴 Yrm 𝑘) ∈ ℤ)
2921, 26, 28syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑘) ∈ ℤ)
3027fovcl 7578 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3121, 17, 30syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑀) ∈ ℤ)
3227fovcl 7578 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℤ) → (𝐴 Yrm 𝑚) ∈ ℤ)
3321, 15, 32syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑚) ∈ ℤ)
3427fovcl 7578 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
3521, 13, 34syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝐾) ∈ ℤ)
36 jm2.26a 42957 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3721, 9, 26, 13, 36syl22anc 838 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3818, 37mpd 15 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))))
39 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
40 acongtr 42935 . . . . . . . . . . . . . . . 16 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
4125, 29, 35, 31, 38, 39, 40syl222anc 1386 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
42 simpl3r 1229 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
43 acongsym 42933 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
4411, 15, 17, 42, 43syl31anc 1373 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
45 jm2.26a 42957 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4621, 9, 17, 15, 45syl22anc 838 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4744, 46mpd 15 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))
48 acongtr 42935 . . . . . . . . . . . . . . 15 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑚) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
4925, 29, 31, 33, 41, 47, 48syl222anc 1386 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
50 jm2.26lem3 42958 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚)))) → 𝑘 = 𝑚)
516, 19, 14, 49, 50syl121anc 1375 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 = 𝑚)
52 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝑘 = 𝑚)
53 eqidd 2741 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐾 = 𝐾)
5452, 53acongeq12d 42936 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5551, 54syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5618, 55mpbid 232 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾)))
57 acongsym 42933 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
5811, 15, 13, 56, 57syl31anc 1373 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
59 acongtr 42935 . . . . . . . . . 10 ((((2 · 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
6011, 13, 15, 17, 58, 42, 59syl222anc 1386 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
61603exp1 1352 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6261expd 415 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑘 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))))
6362rexlimdv 3159 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
644, 63mpd 15 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
6564expd 415 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑚 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6665rexlimdv 3159 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
672, 66mpd 15 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
68 jm2.26a 42957 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
697, 68sylanl2 680 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
7067, 69impbid 212 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087  wcel 2108  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184   · cmul 11189  cmin 11520  -cneg 11521  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cdvds 16302   Xrm crmx 42856   Yrm crmy 42857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-xnn0 12626  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801  df-rmx 42858  df-rmy 42859
This theorem is referenced by:  jm2.27a  42962
  Copyright terms: Public domain W3C validator