Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26 Structured version   Visualization version   GIF version

Theorem jm2.26 42423
Description: Lemma 2.26 of [JonesMatijasevic] p. 697, the "second step down lemma". (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))

Proof of Theorem jm2.26
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 acongrep 42401 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
21ad2ant2l 745 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
3 acongrep 42401 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ ℤ) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
43ad2ant2lr 747 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
5 2z 12625 . . . . . . . . . . 11 2 ∈ ℤ
6 simpl1l 1222 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ))
7 nnz 12610 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
87adantl 481 . . . . . . . . . . . 12 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
96, 8syl 17 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑁 ∈ ℤ)
10 zmulcl 12642 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
115, 9, 10sylancr 586 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (2 · 𝑁) ∈ ℤ)
12 simplrl 776 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
13123ad2antl1 1183 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐾 ∈ ℤ)
14 simpl3l 1226 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ (0...𝑁))
1514elfzelzd 13535 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑚 ∈ ℤ)
16 simplrr 777 . . . . . . . . . . 11 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
17163ad2antl1 1183 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑀 ∈ ℤ)
18 simpl2r 1225 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)))
19 simpl2l 1224 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ (0...𝑁))
20 simplll 774 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
21203ad2antl1 1183 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝐴 ∈ (ℤ‘2))
22 frmx 42334 . . . . . . . . . . . . . . . . . 18 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
2322fovcl 7549 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
2423nn0zd 12615 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
2521, 9, 24syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Xrm 𝑁) ∈ ℤ)
2619elfzelzd 13535 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 ∈ ℤ)
27 frmy 42335 . . . . . . . . . . . . . . . . 17 Yrm :((ℤ‘2) × ℤ)⟶ℤ
2827fovcl 7549 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑘 ∈ ℤ) → (𝐴 Yrm 𝑘) ∈ ℤ)
2921, 26, 28syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑘) ∈ ℤ)
3027fovcl 7549 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
3121, 17, 30syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑀) ∈ ℤ)
3227fovcl 7549 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ (ℤ‘2) ∧ 𝑚 ∈ ℤ) → (𝐴 Yrm 𝑚) ∈ ℤ)
3321, 15, 32syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝑚) ∈ ℤ)
3427fovcl 7549 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
3521, 13, 34syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (𝐴 Yrm 𝐾) ∈ ℤ)
36 jm2.26a 42421 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑘 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3721, 9, 26, 13, 36syl22anc 838 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾)))))
3818, 37mpd 15 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))))
39 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
40 acongtr 42399 . . . . . . . . . . . . . . . 16 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝐾)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝐾))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
4125, 29, 35, 31, 38, 39, 40syl222anc 1384 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))))
42 simpl3r 1227 . . . . . . . . . . . . . . . . 17 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))
43 acongsym 42397 . . . . . . . . . . . . . . . . 17 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
4411, 15, 17, 42, 43syl31anc 1371 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)))
45 jm2.26a 42421 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑚 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4621, 9, 17, 15, 45syl22anc 838 . . . . . . . . . . . . . . . 16 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑀𝑚) ∨ (2 · 𝑁) ∥ (𝑀 − -𝑚)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚)))))
4744, 46mpd 15 . . . . . . . . . . . . . . 15 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))
48 acongtr 42399 . . . . . . . . . . . . . . 15 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝑘) ∈ ℤ) ∧ ((𝐴 Yrm 𝑀) ∈ ℤ ∧ (𝐴 Yrm 𝑚) ∈ ℤ) ∧ (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑀))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑀) − -(𝐴 Yrm 𝑚))))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
4925, 29, 31, 33, 41, 47, 48syl222anc 1384 . . . . . . . . . . . . . 14 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚))))
50 jm2.26lem3 42422 . . . . . . . . . . . . . 14 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝑘 ∈ (0...𝑁) ∧ 𝑚 ∈ (0...𝑁)) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − (𝐴 Yrm 𝑚)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝑘) − -(𝐴 Yrm 𝑚)))) → 𝑘 = 𝑚)
516, 19, 14, 49, 50syl121anc 1373 . . . . . . . . . . . . 13 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → 𝑘 = 𝑚)
52 id 22 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝑘 = 𝑚)
53 eqidd 2729 . . . . . . . . . . . . . 14 (𝑘 = 𝑚𝐾 = 𝐾)
5452, 53acongeq12d 42400 . . . . . . . . . . . . 13 (𝑘 = 𝑚 → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5551, 54syl 17 . . . . . . . . . . . 12 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) ↔ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))))
5618, 55mpbid 231 . . . . . . . . . . 11 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾)))
57 acongsym 42397 . . . . . . . . . . 11 ((((2 · 𝑁) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ ((2 · 𝑁) ∥ (𝑚𝐾) ∨ (2 · 𝑁) ∥ (𝑚 − -𝐾))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
5811, 15, 13, 56, 57syl31anc 1371 . . . . . . . . . 10 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)))
59 acongtr 42399 . . . . . . . . . 10 ((((2 · 𝑁) ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑚 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (((2 · 𝑁) ∥ (𝐾𝑚) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑚)) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
6011, 13, 15, 17, 58, 42, 59syl222anc 1384 . . . . . . . . 9 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ (𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) ∧ (𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)))) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))
61603exp1 1350 . . . . . . . 8 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑘 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾))) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6261expd 415 . . . . . . 7 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑘 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))))
6362rexlimdv 3150 . . . . . 6 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑘 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑘𝐾) ∨ (2 · 𝑁) ∥ (𝑘 − -𝐾)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
644, 63mpd 15 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((𝑚 ∈ (0...𝑁) ∧ ((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀))) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
6564expd 415 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝑚 ∈ (0...𝑁) → (((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))))
6665rexlimdv 3150 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑚 ∈ (0...𝑁)((2 · 𝑁) ∥ (𝑚𝑀) ∨ (2 · 𝑁) ∥ (𝑚 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)))))
672, 66mpd 15 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) → ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
68 jm2.26a 42421 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
697, 68sylanl2 680 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
7067, 69impbid 211 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))) ↔ ((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 846  w3a 1085  wcel 2099  wrex 3067   class class class wbr 5148  cfv 6548  (class class class)co 7420  0cc0 11139   · cmul 11144  cmin 11475  -cneg 11476  cn 12243  2c2 12298  0cn0 12503  cz 12589  cuz 12853  ...cfz 13517  cdvds 16231   Xrm crmx 42320   Yrm crmy 42321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217  ax-addf 11218
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-omul 8492  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9387  df-fi 9435  df-sup 9466  df-inf 9467  df-oi 9534  df-card 9963  df-acn 9966  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-dec 12709  df-uz 12854  df-q 12964  df-rp 13008  df-xneg 13125  df-xadd 13126  df-xmul 13127  df-ioo 13361  df-ioc 13362  df-ico 13363  df-icc 13364  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-fac 14266  df-bc 14295  df-hash 14323  df-shft 15047  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-limsup 15448  df-clim 15465  df-rlim 15466  df-sum 15666  df-ef 16044  df-sin 16046  df-cos 16047  df-pi 16049  df-dvds 16232  df-gcd 16470  df-numer 16707  df-denom 16708  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-mulr 17247  df-starv 17248  df-sca 17249  df-vsca 17250  df-ip 17251  df-tset 17252  df-ple 17253  df-ds 17255  df-unif 17256  df-hom 17257  df-cco 17258  df-rest 17404  df-topn 17405  df-0g 17423  df-gsum 17424  df-topgen 17425  df-pt 17426  df-prds 17429  df-xrs 17484  df-qtop 17489  df-imas 17490  df-xps 17492  df-mre 17566  df-mrc 17567  df-acs 17569  df-mgm 18600  df-sgrp 18679  df-mnd 18695  df-submnd 18741  df-mulg 19024  df-cntz 19268  df-cmn 19737  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22862  df-cld 22936  df-ntr 22937  df-cls 22938  df-nei 23015  df-lp 23053  df-perf 23054  df-cn 23144  df-cnp 23145  df-haus 23232  df-tx 23479  df-hmeo 23672  df-fil 23763  df-fm 23855  df-flim 23856  df-flf 23857  df-xms 24239  df-ms 24240  df-tms 24241  df-cncf 24811  df-limc 25808  df-dv 25809  df-log 26503  df-squarenn 42261  df-pell1qr 42262  df-pell14qr 42263  df-pell1234qr 42264  df-pellfund 42265  df-rmx 42322  df-rmy 42323
This theorem is referenced by:  jm2.27a  42426
  Copyright terms: Public domain W3C validator