Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26a Structured version   Visualization version   GIF version

Theorem jm2.26a 42658
Description: Lemma for jm2.26 42660. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26a (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))

Proof of Theorem jm2.26a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2z 12646 . . . . 5 2 ∈ ℤ
2 simplr 767 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3 zmulcl 12663 . . . . 5 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
41, 2, 3sylancr 585 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (2 · 𝑁) ∈ ℤ)
5 zsubcl 12656 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
65adantl 480 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾𝑀) ∈ ℤ)
7 divides 16258 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
84, 6, 7syl2anc 582 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
9 simplll 773 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
10 simplrr 776 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑀 ∈ ℤ)
11 simpllr 774 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
12 simpr 483 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
13 jm2.25 42657 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
149, 10, 11, 12, 13syl121anc 1372 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1514adantr 479 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
16 oveq2 7432 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐾𝑀)))
1716oveq2d 7440 . . . . . . 7 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐾𝑀))))
18 zcn 12615 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12615 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
20 pncan3 11518 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2118, 19, 20syl2anr 595 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2221ad2antlr 725 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2322oveq2d 7440 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝐾𝑀))) = (𝐴 Yrm 𝐾))
2417, 23sylan9eqr 2788 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
25 eqidd 2727 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑀))
2624, 25acongeq12d 42637 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
2715, 26mpbid 231 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
2827rexlimdva2 3147 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
298, 28sylbid 239 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
30 simprl 769 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
31 znegcl 12649 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
3231ad2antll 727 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → -𝑀 ∈ ℤ)
3330, 32zsubcld 12723 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − -𝑀) ∈ ℤ)
34 divides 16258 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾 − -𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
354, 33, 34syl2anc 582 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
36 frmx 42571 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3736fovcl 7554 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3837nn0zd 12636 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
399, 11, 38syl2anc 582 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
40 simplrl 775 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐾 ∈ ℤ)
41 frmy 42572 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4241fovcl 7554 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
439, 40, 42syl2anc 582 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
4441fovcl 7554 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
459, 10, 44syl2anc 582 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
4639, 43, 453jca 1125 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4746adantr 479 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4832adantr 479 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → -𝑀 ∈ ℤ)
49 jm2.25 42657 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
509, 48, 11, 12, 49syl121anc 1372 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
5150adantr 479 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
52 oveq2 7432 . . . . . . . . 9 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (-𝑀 + (𝑎 · (2 · 𝑁))) = (-𝑀 + (𝐾 − -𝑀)))
5352oveq2d 7440 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))))
5418negcld 11608 . . . . . . . . . . 11 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
55 pncan3 11518 . . . . . . . . . . 11 ((-𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5654, 19, 55syl2anr 595 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5756ad2antlr 725 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5857oveq2d 7440 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))) = (𝐴 Yrm 𝐾))
5953, 58sylan9eqr 2788 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
60 rmyneg 42586 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
619, 10, 60syl2anc 582 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6261adantr 479 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6359, 62acongeq12d 42637 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))))
6451, 63mpbid 231 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀))))
65 acongneg2 42635 . . . . 5 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6647, 64, 65syl2anc 582 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6766rexlimdva2 3147 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6835, 67sylbid 239 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6929, 68jaod 857 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5153  cfv 6554  (class class class)co 7424  cc 11156   + caddc 11161   · cmul 11163  cmin 11494  -cneg 11495  2c2 12319  0cn0 12524  cz 12610  cuz 12874  cdvds 16256   Xrm crmx 42557   Yrm crmy 42558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12597  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-sin 16071  df-cos 16072  df-pi 16074  df-dvds 16257  df-gcd 16495  df-numer 16737  df-denom 16738  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-limc 25886  df-dv 25887  df-log 26583  df-squarenn 42498  df-pell1qr 42499  df-pell14qr 42500  df-pell1234qr 42501  df-pellfund 42502  df-rmx 42559  df-rmy 42560
This theorem is referenced by:  jm2.26  42660
  Copyright terms: Public domain W3C validator