Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26a Structured version   Visualization version   GIF version

Theorem jm2.26a 40831
Description: Lemma for jm2.26 40833. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26a (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))

Proof of Theorem jm2.26a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2z 12363 . . . . 5 2 ∈ ℤ
2 simplr 766 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3 zmulcl 12380 . . . . 5 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
41, 2, 3sylancr 587 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (2 · 𝑁) ∈ ℤ)
5 zsubcl 12373 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
65adantl 482 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾𝑀) ∈ ℤ)
7 divides 15976 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
84, 6, 7syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
9 simplll 772 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
10 simplrr 775 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑀 ∈ ℤ)
11 simpllr 773 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
12 simpr 485 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
13 jm2.25 40830 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
149, 10, 11, 12, 13syl121anc 1374 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1514adantr 481 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
16 oveq2 7280 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐾𝑀)))
1716oveq2d 7288 . . . . . . 7 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐾𝑀))))
18 zcn 12335 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12335 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
20 pncan3 11240 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2118, 19, 20syl2anr 597 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2221ad2antlr 724 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2322oveq2d 7288 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝐾𝑀))) = (𝐴 Yrm 𝐾))
2417, 23sylan9eqr 2802 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
25 eqidd 2741 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑀))
2624, 25acongeq12d 40810 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
2715, 26mpbid 231 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
2827rexlimdva2 3218 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
298, 28sylbid 239 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
30 simprl 768 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
31 znegcl 12366 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
3231ad2antll 726 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → -𝑀 ∈ ℤ)
3330, 32zsubcld 12442 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − -𝑀) ∈ ℤ)
34 divides 15976 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾 − -𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
354, 33, 34syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
36 frmx 40744 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3736fovcl 7397 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3837nn0zd 12435 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
399, 11, 38syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
40 simplrl 774 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐾 ∈ ℤ)
41 frmy 40745 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4241fovcl 7397 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
439, 40, 42syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
4441fovcl 7397 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
459, 10, 44syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
4639, 43, 453jca 1127 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4746adantr 481 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4832adantr 481 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → -𝑀 ∈ ℤ)
49 jm2.25 40830 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
509, 48, 11, 12, 49syl121anc 1374 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
5150adantr 481 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
52 oveq2 7280 . . . . . . . . 9 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (-𝑀 + (𝑎 · (2 · 𝑁))) = (-𝑀 + (𝐾 − -𝑀)))
5352oveq2d 7288 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))))
5418negcld 11330 . . . . . . . . . . 11 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
55 pncan3 11240 . . . . . . . . . . 11 ((-𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5654, 19, 55syl2anr 597 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5756ad2antlr 724 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5857oveq2d 7288 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))) = (𝐴 Yrm 𝐾))
5953, 58sylan9eqr 2802 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
60 rmyneg 40759 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
619, 10, 60syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6261adantr 481 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6359, 62acongeq12d 40810 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))))
6451, 63mpbid 231 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀))))
65 acongneg2 40808 . . . . 5 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6647, 64, 65syl2anc 584 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6766rexlimdva2 3218 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6835, 67sylbid 239 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6929, 68jaod 856 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wrex 3067   class class class wbr 5079  cfv 6432  (class class class)co 7272  cc 10880   + caddc 10885   · cmul 10887  cmin 11216  -cneg 11217  2c2 12039  0cn0 12244  cz 12330  cuz 12593  cdvds 15974   Xrm crmx 40731   Yrm crmy 40732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-inf2 9387  ax-cnex 10938  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958  ax-pre-mulgt0 10959  ax-pre-sup 10960  ax-addf 10961  ax-mulf 10962
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-of 7528  df-om 7708  df-1st 7825  df-2nd 7826  df-supp 7970  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-1o 8289  df-2o 8290  df-oadd 8293  df-omul 8294  df-er 8490  df-map 8609  df-pm 8610  df-ixp 8678  df-en 8726  df-dom 8727  df-sdom 8728  df-fin 8729  df-fsupp 9117  df-fi 9158  df-sup 9189  df-inf 9190  df-oi 9257  df-card 9708  df-acn 9711  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025  df-le 11026  df-sub 11218  df-neg 11219  df-div 11644  df-nn 11985  df-2 12047  df-3 12048  df-4 12049  df-5 12050  df-6 12051  df-7 12052  df-8 12053  df-9 12054  df-n0 12245  df-xnn0 12317  df-z 12331  df-dec 12449  df-uz 12594  df-q 12700  df-rp 12742  df-xneg 12859  df-xadd 12860  df-xmul 12861  df-ioo 13094  df-ioc 13095  df-ico 13096  df-icc 13097  df-fz 13251  df-fzo 13394  df-fl 13523  df-mod 13601  df-seq 13733  df-exp 13794  df-fac 13999  df-bc 14028  df-hash 14056  df-shft 14789  df-cj 14821  df-re 14822  df-im 14823  df-sqrt 14957  df-abs 14958  df-limsup 15191  df-clim 15208  df-rlim 15209  df-sum 15409  df-ef 15788  df-sin 15790  df-cos 15791  df-pi 15793  df-dvds 15975  df-gcd 16213  df-numer 16450  df-denom 16451  df-struct 16859  df-sets 16876  df-slot 16894  df-ndx 16906  df-base 16924  df-ress 16953  df-plusg 16986  df-mulr 16987  df-starv 16988  df-sca 16989  df-vsca 16990  df-ip 16991  df-tset 16992  df-ple 16993  df-ds 16995  df-unif 16996  df-hom 16997  df-cco 16998  df-rest 17144  df-topn 17145  df-0g 17163  df-gsum 17164  df-topgen 17165  df-pt 17166  df-prds 17169  df-xrs 17224  df-qtop 17229  df-imas 17230  df-xps 17232  df-mre 17306  df-mrc 17307  df-acs 17309  df-mgm 18337  df-sgrp 18386  df-mnd 18397  df-submnd 18442  df-mulg 18712  df-cntz 18934  df-cmn 19399  df-psmet 20600  df-xmet 20601  df-met 20602  df-bl 20603  df-mopn 20604  df-fbas 20605  df-fg 20606  df-cnfld 20609  df-top 22054  df-topon 22071  df-topsp 22093  df-bases 22107  df-cld 22181  df-ntr 22182  df-cls 22183  df-nei 22260  df-lp 22298  df-perf 22299  df-cn 22389  df-cnp 22390  df-haus 22477  df-tx 22724  df-hmeo 22917  df-fil 23008  df-fm 23100  df-flim 23101  df-flf 23102  df-xms 23484  df-ms 23485  df-tms 23486  df-cncf 24052  df-limc 25041  df-dv 25042  df-log 25723  df-squarenn 40672  df-pell1qr 40673  df-pell14qr 40674  df-pell1234qr 40675  df-pellfund 40676  df-rmx 40733  df-rmy 40734
This theorem is referenced by:  jm2.26  40833
  Copyright terms: Public domain W3C validator