Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26a Structured version   Visualization version   GIF version

Theorem jm2.26a 42996
Description: Lemma for jm2.26 42998. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26a (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))

Proof of Theorem jm2.26a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2z 12572 . . . . 5 2 ∈ ℤ
2 simplr 768 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3 zmulcl 12589 . . . . 5 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
41, 2, 3sylancr 587 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (2 · 𝑁) ∈ ℤ)
5 zsubcl 12582 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
65adantl 481 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾𝑀) ∈ ℤ)
7 divides 16231 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
84, 6, 7syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
9 simplll 774 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
10 simplrr 777 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑀 ∈ ℤ)
11 simpllr 775 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
12 simpr 484 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
13 jm2.25 42995 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
149, 10, 11, 12, 13syl121anc 1377 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1514adantr 480 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
16 oveq2 7398 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐾𝑀)))
1716oveq2d 7406 . . . . . . 7 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐾𝑀))))
18 zcn 12541 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12541 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
20 pncan3 11436 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2118, 19, 20syl2anr 597 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2221ad2antlr 727 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2322oveq2d 7406 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝐾𝑀))) = (𝐴 Yrm 𝐾))
2417, 23sylan9eqr 2787 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
25 eqidd 2731 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑀))
2624, 25acongeq12d 42975 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
2715, 26mpbid 232 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
2827rexlimdva2 3137 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
298, 28sylbid 240 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
30 simprl 770 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
31 znegcl 12575 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
3231ad2antll 729 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → -𝑀 ∈ ℤ)
3330, 32zsubcld 12650 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − -𝑀) ∈ ℤ)
34 divides 16231 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾 − -𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
354, 33, 34syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
36 frmx 42909 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3736fovcl 7520 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3837nn0zd 12562 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
399, 11, 38syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
40 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐾 ∈ ℤ)
41 frmy 42910 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4241fovcl 7520 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
439, 40, 42syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
4441fovcl 7520 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
459, 10, 44syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
4639, 43, 453jca 1128 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4746adantr 480 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4832adantr 480 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → -𝑀 ∈ ℤ)
49 jm2.25 42995 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
509, 48, 11, 12, 49syl121anc 1377 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
5150adantr 480 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
52 oveq2 7398 . . . . . . . . 9 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (-𝑀 + (𝑎 · (2 · 𝑁))) = (-𝑀 + (𝐾 − -𝑀)))
5352oveq2d 7406 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))))
5418negcld 11527 . . . . . . . . . . 11 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
55 pncan3 11436 . . . . . . . . . . 11 ((-𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5654, 19, 55syl2anr 597 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5756ad2antlr 727 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5857oveq2d 7406 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))) = (𝐴 Yrm 𝐾))
5953, 58sylan9eqr 2787 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
60 rmyneg 42924 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
619, 10, 60syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6261adantr 480 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6359, 62acongeq12d 42975 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))))
6451, 63mpbid 232 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀))))
65 acongneg2 42973 . . . . 5 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6647, 64, 65syl2anc 584 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6766rexlimdva2 3137 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6835, 67sylbid 240 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6929, 68jaod 859 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413  2c2 12248  0cn0 12449  cz 12536  cuz 12800  cdvds 16229   Xrm crmx 42895   Yrm crmy 42896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-squarenn 42836  df-pell1qr 42837  df-pell14qr 42838  df-pell1234qr 42839  df-pellfund 42840  df-rmx 42897  df-rmy 42898
This theorem is referenced by:  jm2.26  42998
  Copyright terms: Public domain W3C validator