Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  jm2.26a Structured version   Visualization version   GIF version

Theorem jm2.26a 43024
Description: Lemma for jm2.26 43026. Reverse direction is required to prove forward direction, so do it separately. Induction on difference between K and M, together with the addition formula fact that adding 2N only inverts sign. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
jm2.26a (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))

Proof of Theorem jm2.26a
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 2z 12624 . . . . 5 2 ∈ ℤ
2 simplr 768 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝑁 ∈ ℤ)
3 zmulcl 12641 . . . . 5 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ)
41, 2, 3sylancr 587 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (2 · 𝑁) ∈ ℤ)
5 zsubcl 12634 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
65adantl 481 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾𝑀) ∈ ℤ)
7 divides 16274 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
84, 6, 7syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)))
9 simplll 774 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐴 ∈ (ℤ‘2))
10 simplrr 777 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑀 ∈ ℤ)
11 simpllr 775 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑁 ∈ ℤ)
12 simpr 484 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝑎 ∈ ℤ)
13 jm2.25 43023 . . . . . . 7 ((𝐴 ∈ (ℤ‘2) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
149, 10, 11, 12, 13syl121anc 1377 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
1514adantr 480 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))))
16 oveq2 7413 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝑀 + (𝑎 · (2 · 𝑁))) = (𝑀 + (𝐾𝑀)))
1716oveq2d 7421 . . . . . . 7 ((𝑎 · (2 · 𝑁)) = (𝐾𝑀) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (𝑀 + (𝐾𝑀))))
18 zcn 12593 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
19 zcn 12593 . . . . . . . . . 10 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
20 pncan3 11490 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2118, 19, 20syl2anr 597 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2221ad2antlr 727 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝑀 + (𝐾𝑀)) = 𝐾)
2322oveq2d 7421 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (𝑀 + (𝐾𝑀))) = (𝐴 Yrm 𝐾))
2417, 23sylan9eqr 2792 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
25 eqidd 2736 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (𝐴 Yrm 𝑀) = (𝐴 Yrm 𝑀))
2624, 25acongeq12d 43003 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm 𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
2715, 26mpbid 232 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
2827rexlimdva2 3143 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
298, 28sylbid 240 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
30 simprl 770 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → 𝐾 ∈ ℤ)
31 znegcl 12627 . . . . . 6 (𝑀 ∈ ℤ → -𝑀 ∈ ℤ)
3231ad2antll 729 . . . . 5 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → -𝑀 ∈ ℤ)
3330, 32zsubcld 12702 . . . 4 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 − -𝑀) ∈ ℤ)
34 divides 16274 . . . 4 (((2 · 𝑁) ∈ ℤ ∧ (𝐾 − -𝑀) ∈ ℤ) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
354, 33, 34syl2anc 584 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) ↔ ∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)))
36 frmx 42937 . . . . . . . . . 10 Xrm :((ℤ‘2) × ℤ)⟶ℕ0
3736fovcl 7535 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℕ0)
3837nn0zd 12614 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
399, 11, 38syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Xrm 𝑁) ∈ ℤ)
40 simplrl 776 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → 𝐾 ∈ ℤ)
41 frmy 42938 . . . . . . . . 9 Yrm :((ℤ‘2) × ℤ)⟶ℤ
4241fovcl 7535 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝐾 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
439, 40, 42syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝐾) ∈ ℤ)
4441fovcl 7535 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
459, 10, 44syl2anc 584 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm 𝑀) ∈ ℤ)
4639, 43, 453jca 1128 . . . . . 6 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4746adantr 480 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ))
4832adantr 480 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → -𝑀 ∈ ℤ)
49 jm2.25 43023 . . . . . . . 8 ((𝐴 ∈ (ℤ‘2) ∧ (-𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
509, 48, 11, 12, 49syl121anc 1377 . . . . . . 7 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
5150adantr 480 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))))
52 oveq2 7413 . . . . . . . . 9 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (-𝑀 + (𝑎 · (2 · 𝑁))) = (-𝑀 + (𝐾 − -𝑀)))
5352oveq2d 7421 . . . . . . . 8 ((𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))))
5418negcld 11581 . . . . . . . . . . 11 (𝑀 ∈ ℤ → -𝑀 ∈ ℂ)
55 pncan3 11490 . . . . . . . . . . 11 ((-𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5654, 19, 55syl2anr 597 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5756ad2antlr 727 . . . . . . . . 9 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (-𝑀 + (𝐾 − -𝑀)) = 𝐾)
5857oveq2d 7421 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm (-𝑀 + (𝐾 − -𝑀))) = (𝐴 Yrm 𝐾))
5953, 58sylan9eqr 2792 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) = (𝐴 Yrm 𝐾))
60 rmyneg 42952 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ 𝑀 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
619, 10, 60syl2anc 584 . . . . . . . 8 ((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6261adantr 480 . . . . . . 7 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (𝐴 Yrm -𝑀) = -(𝐴 Yrm 𝑀))
6359, 62acongeq12d 43003 . . . . . 6 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → (((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − (𝐴 Yrm -𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm (-𝑀 + (𝑎 · (2 · 𝑁)))) − -(𝐴 Yrm -𝑀))) ↔ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))))
6451, 63mpbid 232 . . . . 5 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀))))
65 acongneg2 43001 . . . . 5 ((((𝐴 Xrm 𝑁) ∈ ℤ ∧ (𝐴 Yrm 𝐾) ∈ ℤ ∧ (𝐴 Yrm 𝑀) ∈ ℤ) ∧ ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − --(𝐴 Yrm 𝑀)))) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6647, 64, 65syl2anc 584 . . . 4 (((((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) ∧ 𝑎 ∈ ℤ) ∧ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀))))
6766rexlimdva2 3143 . . 3 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (∃𝑎 ∈ ℤ (𝑎 · (2 · 𝑁)) = (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6835, 67sylbid 240 . 2 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → ((2 · 𝑁) ∥ (𝐾 − -𝑀) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
6929, 68jaod 859 1 (((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (((2 · 𝑁) ∥ (𝐾𝑀) ∨ (2 · 𝑁) ∥ (𝐾 − -𝑀)) → ((𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − (𝐴 Yrm 𝑀)) ∨ (𝐴 Xrm 𝑁) ∥ ((𝐴 Yrm 𝐾) − -(𝐴 Yrm 𝑀)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wrex 3060   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127   + caddc 11132   · cmul 11134  cmin 11466  -cneg 11467  2c2 12295  0cn0 12501  cz 12588  cuz 12852  cdvds 16272   Xrm crmx 42923   Yrm crmy 42924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-acn 9956  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ioc 13367  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-seq 14020  df-exp 14080  df-fac 14292  df-bc 14321  df-hash 14349  df-shft 15086  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-limsup 15487  df-clim 15504  df-rlim 15505  df-sum 15703  df-ef 16083  df-sin 16085  df-cos 16086  df-pi 16088  df-dvds 16273  df-gcd 16514  df-numer 16754  df-denom 16755  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820  df-log 26517  df-squarenn 42864  df-pell1qr 42865  df-pell14qr 42866  df-pell1234qr 42867  df-pellfund 42868  df-rmx 42925  df-rmy 42926
This theorem is referenced by:  jm2.26  43026
  Copyright terms: Public domain W3C validator