Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1542
-cneg 11445 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-ext 2704 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7412 df-neg 11447 |
This theorem is referenced by: negdi
11517 mulneg2
11651 mulm1
11655 ltord2
11743 leord2
11744 eqord2
11745 divneg
11906 div2neg
11937 recgt0
12060 infrenegsup
12197 supminf
12919 mul2lt0rlt0
13076 ceilval
13803 dfceil2
13804 ceilid
13816 modcyc2
13872 monoord2
13999 expval
14029 discr
14203 reneg
15072 imneg
15080 cjcj
15087 cjneg
15094 sqeqd
15113 telfsumo2
15749 infcvgaux1i
15803 infcvgaux2i
15804 risefallfac
15968 bpoly3
16002 sinneg
16089 tanneg
16091 sincossq
16119 odd2np1
16284 oexpneg
16288 modgcd
16474 pcneg
16807 mulgval
18954 mulgneg
18972 psgnunilem2
19363 evth2
24476 ivth2
24972 mbfposb
25170 mbfinf
25182 mbfi1flimlem
25240 iblcnlem
25306 iblrelem
25308 itgrevallem1
25312 iblneg
25320 itgneg
25321 ibladd
25338 ditgeq1
25365 ditgeq2
25366 ditgeq3
25367 ditgneg
25374 ditgswap
25376 dvrec
25472 dvrecg
25490 dvmptdiv
25491 dvexp3
25495 dvsincos
25498 rolle
25507 dvivth
25527 dvfsumge
25539 dvfsumlem2
25544 dvfsum2
25551 ftc2ditg
25563 vieta1lem2
25824 vieta1
25825 aaliou3lem2
25856 aaliou3lem8
25858 aaliou3lem5
25860 aaliou3lem6
25861 aaliou3lem7
25862 aaliou3
25864 sinperlem
25990 efimpi
26001 ptolemy
26006 sineq0
26033 efeq1
26037 tanregt0
26048 efif1olem2
26052 lognegb
26098 logneg2
26123 advlogexp
26163 logtayl
26168 logtayl2
26170 logccv
26171 cxpmul2z
26199 logbrec
26287 cosangneg2d
26312 isosctrlem2
26324 isosctrlem3
26325 angpined
26335 dcubic1lem
26348 dcubic2
26349 mcubic
26352 cubic2
26353 dquart
26358 quart1lem
26360 quartlem1
26362 quart
26366 asinlem3a
26375 asinneg
26391 atanneg
26412 atancj
26415 atanlogaddlem
26418 atanlogsublem
26420 atantan
26428 atantayl
26442 birthdaylem3
26458 amgmlem
26494 emcllem7
26506 lgamgulmlem2
26534 ftalem5
26581 basellem5
26589 basellem9
26593 lgsneg1
26825 lgseisenlem1
26878 lgseisenlem4
26881 m1lgs
26891 2sqblem
26934 dchrisum0flblem1
27011 rpvmasum2
27015 pntrsumo1
27068 pntrlog2bndlem2
27081 pntibndlem2
27094 padicfval
27119 padicval
27120 ostth3
27141 brbtwn2
28194 colinearalglem4
28198 axsegconlem9
28214 ex-ceil
29732 nvabs
29956 ipasslem2
30116 numdenneg
32054 archirngz
32366 ccfldextdgrr
32777 xrge0iifcv
32945 xrge0iifhom
32948 xrge0iif1
32949 xrge0tmd
32956 xrge0tmdALT
32957 fdvneggt
33643 fdvnegge
33645 climlec3
34734 gg-dvfsumlem2
35214 dvtan
36586 itg2addnclem3
36589 ibladdnc
36593 ftc1anclem5
36613 ftc1anclem6
36614 areacirclem1
36624 areacirc
36629 dffltz
41424 3cubeslem3r
41473 pellexlem6
41620 pell1234qrdich
41647 rmxm1
41721 rmym1
41722 monotoddzzfi
41729 monotoddzz
41730 oddcomabszz
41731 acongeq12d
41766 acongeq
41770 sineq0ALT
43746 infnsuprnmpt
44002 supminfrnmpt
44203 supminfxr
44222 neglimc
44411 dvcosax
44690 itgsin0pilem1
44714 itgsinexplem1
44718 itgsincmulx
44738 stoweidlem13
44777 stirlinglem5
44842 dirkerper
44860 dirkertrigeqlem3
44864 fourierdlem39
44910 fourierdlem40
44911 fourierdlem41
44912 fourierdlem43
44914 fourierdlem49
44919 fourierdlem73
44943 fourierdlem78
44948 fourierdlem103
44973 sqwvfourb
44993 etransclem46
45044 etransclem47
45045 sigarac
45616 sigaras
45619 sigarms
45620 sigariz
45627 sigarcol
45628 sharhght
45629 sigaradd
45630 2pwp1prm
46305 oexpnegALTV
46393 oexpnegnz
46394 itschlc0yqe
47494 itsclc0yqsol
47498 itsclquadb
47510 itscnhlinecirc02plem2
47517 amgmwlem
47897 |