Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Visualization version   GIF version

Theorem acongrep 39716
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem acongrep
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 2nn 11688 . . . 4 2 ∈ ℕ
2 simpl 486 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℕ)
3 nnmulcl 11639 . . . 4 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
41, 2, 3sylancr 590 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℕ)
5 simpr 488 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 congrep 39709 . . 3 (((2 · 𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
74, 5, 6syl2anc 587 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
8 elfzelz 12891 . . . . 5 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℤ)
98zred 12065 . . . 4 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℝ)
109ad2antrl 727 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℝ)
11 nnre 11622 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1211ad2antrr 725 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℝ)
13 elfzle1 12893 . . . . . . 7 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 0 ≤ 𝑏)
1413ad2antrl 727 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ≤ 𝑏)
1514anim1i 617 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (0 ≤ 𝑏𝑏𝐴))
168ad2antrl 727 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℤ)
17 0zd 11971 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ∈ ℤ)
18 nnz 11982 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1918ad2antrr 725 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℤ)
20 elfz 12881 . . . . . . 7 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2116, 17, 19, 20syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2221adantr 484 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2315, 22mpbird 260 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → 𝑏 ∈ (0...𝐴))
24 simplrr 777 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (2 · 𝐴) ∥ (𝑏𝑁))
2524orcd 870 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁)))
26 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
27 eqidd 2822 . . . . . 6 (𝑎 = 𝑏𝑁 = 𝑁)
2826, 27acongeq12d 39715 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))))
2928rspcev 3600 . . . 4 ((𝑏 ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
3023, 25, 29syl2anc 587 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
31 simplll 774 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴 ∈ ℕ)
32 simplrl 776 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
33 simpr 488 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴𝑏)
3493ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ ℝ)
35 2re 11689 . . . . . . . . . . 11 2 ∈ ℝ
36 remulcl 10599 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3735, 11, 36sylancr 590 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℝ)
38373ad2ant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℝ)
39 0zd 11971 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ∈ ℤ)
40 2z 11992 . . . . . . . . . . . . 13 2 ∈ ℤ
41 zmulcl 12009 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
4240, 18, 41sylancr 590 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℤ)
43423ad2ant1 1130 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℤ)
44 simp2 1134 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
45 elfzm11 12961 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → (𝑏 ∈ (0...((2 · 𝐴) − 1)) ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴))))
4645biimpa 480 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1))) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4739, 43, 44, 46syl21anc 836 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4847simp3d 1141 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 < (2 · 𝐴))
4934, 38, 48ltled 10765 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ≤ (2 · 𝐴))
5038, 34subge0d 11207 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ↔ 𝑏 ≤ (2 · 𝐴)))
5149, 50mpbird 260 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ≤ ((2 · 𝐴) − 𝑏))
52113ad2ant1 1130 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴 ∈ ℝ)
53 nncn 11623 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
54 2times 11751 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
5554oveq1d 7145 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = ((𝐴 + 𝐴) − 𝐴))
56 pncan2 10870 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5756anidms 570 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5855, 57eqtrd 2856 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = 𝐴)
5953, 58syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2 · 𝐴) − 𝐴) = 𝐴)
60593ad2ant1 1130 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) = 𝐴)
61 simp3 1135 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴𝑏)
6260, 61eqbrtrd 5061 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) ≤ 𝑏)
6338, 52, 34, 62subled 11220 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ≤ 𝐴)
6451, 63jca 515 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6531, 32, 33, 64syl3anc 1368 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6640, 19, 41sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℤ)
6766, 16zsubcld 12070 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℤ)
68 elfz 12881 . . . . . . 7 ((((2 · 𝐴) − 𝑏) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
6967, 17, 19, 68syl3anc 1368 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7069adantr 484 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7165, 70mpbird 260 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ∈ (0...𝐴))
72 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℤ)
73 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑏𝑁))
74 congsym 39704 . . . . . . . . 9 ((((2 · 𝐴) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7566, 16, 72, 73, 74syl22anc 837 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7672, 16zsubcld 12070 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑁𝑏) ∈ ℤ)
77 dvdsadd 15631 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝑁𝑏) ∈ ℤ) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7866, 76, 77syl2anc 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7975, 78mpbid 235 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏)))
8067zcnd 12066 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℂ)
81 zcn 11964 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8281ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℂ)
8380, 82subnegd 10981 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = (((2 · 𝐴) − 𝑏) + 𝑁))
8466zcnd 12066 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℂ)
8510recnd 10646 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℂ)
8684, 85, 82subadd23d 10996 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) + 𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8783, 86eqtrd 2856 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8879, 87breqtrrd 5067 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
8988adantr 484 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
9089olcd 871 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁)))
91 id 22 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑎 = ((2 · 𝐴) − 𝑏))
92 eqidd 2822 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑁 = 𝑁)
9391, 92acongeq12d 39715 . . . . 5 (𝑎 = ((2 · 𝐴) − 𝑏) → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))))
9493rspcev 3600 . . . 4 ((((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9571, 90, 94syl2anc 587 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9610, 12, 30, 95lecasei 10723 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
977, 96rexlimddv 3277 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wrex 3127   class class class wbr 5039  (class class class)co 7130  cc 10512  cr 10513  0cc0 10514  1c1 10515   + caddc 10517   · cmul 10519   < clt 10652  cle 10653  cmin 10847  -cneg 10848  cn 11615  2c2 11670  cz 11959  ...cfz 12875  cdvds 15586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-n0 11876  df-z 11960  df-uz 12222  df-rp 12368  df-fz 12876  df-fl 13145  df-mod 13221  df-dvds 15587
This theorem is referenced by:  jm2.26  39738
  Copyright terms: Public domain W3C validator