Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Visualization version   GIF version

Theorem acongrep 42937
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem acongrep
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 2nn 12366 . . . 4 2 ∈ ℕ
2 simpl 482 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℕ)
3 nnmulcl 12317 . . . 4 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
41, 2, 3sylancr 586 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℕ)
5 simpr 484 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 congrep 42930 . . 3 (((2 · 𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
74, 5, 6syl2anc 583 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
8 elfzelz 13584 . . . . 5 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℤ)
98zred 12747 . . . 4 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℝ)
109ad2antrl 727 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℝ)
11 nnre 12300 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1211ad2antrr 725 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℝ)
13 elfzle1 13587 . . . . . . 7 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 0 ≤ 𝑏)
1413ad2antrl 727 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ≤ 𝑏)
1514anim1i 614 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (0 ≤ 𝑏𝑏𝐴))
168ad2antrl 727 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℤ)
17 0zd 12651 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ∈ ℤ)
18 nnz 12660 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1918ad2antrr 725 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℤ)
20 elfz 13573 . . . . . . 7 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2116, 17, 19, 20syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2221adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2315, 22mpbird 257 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → 𝑏 ∈ (0...𝐴))
24 simplrr 777 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (2 · 𝐴) ∥ (𝑏𝑁))
2524orcd 872 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁)))
26 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
27 eqidd 2741 . . . . . 6 (𝑎 = 𝑏𝑁 = 𝑁)
2826, 27acongeq12d 42936 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))))
2928rspcev 3635 . . . 4 ((𝑏 ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
3023, 25, 29syl2anc 583 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
31 simplll 774 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴 ∈ ℕ)
32 simplrl 776 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
33 simpr 484 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴𝑏)
3493ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ ℝ)
35 2re 12367 . . . . . . . . . . 11 2 ∈ ℝ
36 remulcl 11269 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3735, 11, 36sylancr 586 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℝ)
38373ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℝ)
39 0zd 12651 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ∈ ℤ)
40 2z 12675 . . . . . . . . . . . . 13 2 ∈ ℤ
41 zmulcl 12692 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
4240, 18, 41sylancr 586 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℤ)
43423ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℤ)
44 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
45 elfzm11 13655 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → (𝑏 ∈ (0...((2 · 𝐴) − 1)) ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴))))
4645biimpa 476 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1))) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4739, 43, 44, 46syl21anc 837 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4847simp3d 1144 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 < (2 · 𝐴))
4934, 38, 48ltled 11438 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ≤ (2 · 𝐴))
5038, 34subge0d 11880 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ↔ 𝑏 ≤ (2 · 𝐴)))
5149, 50mpbird 257 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ≤ ((2 · 𝐴) − 𝑏))
52113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴 ∈ ℝ)
53 nncn 12301 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
54 2times 12429 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
5554oveq1d 7463 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = ((𝐴 + 𝐴) − 𝐴))
56 pncan2 11543 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5756anidms 566 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5855, 57eqtrd 2780 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = 𝐴)
5953, 58syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2 · 𝐴) − 𝐴) = 𝐴)
60593ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) = 𝐴)
61 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴𝑏)
6260, 61eqbrtrd 5188 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) ≤ 𝑏)
6338, 52, 34, 62subled 11893 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ≤ 𝐴)
6451, 63jca 511 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6531, 32, 33, 64syl3anc 1371 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6640, 19, 41sylancr 586 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℤ)
6766, 16zsubcld 12752 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℤ)
68 elfz 13573 . . . . . . 7 ((((2 · 𝐴) − 𝑏) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
6967, 17, 19, 68syl3anc 1371 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7069adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7165, 70mpbird 257 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ∈ (0...𝐴))
72 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℤ)
73 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑏𝑁))
74 congsym 42925 . . . . . . . . 9 ((((2 · 𝐴) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7566, 16, 72, 73, 74syl22anc 838 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7672, 16zsubcld 12752 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑁𝑏) ∈ ℤ)
77 dvdsadd 16350 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝑁𝑏) ∈ ℤ) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7866, 76, 77syl2anc 583 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7975, 78mpbid 232 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏)))
8067zcnd 12748 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℂ)
81 zcn 12644 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8281ad2antlr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℂ)
8380, 82subnegd 11654 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = (((2 · 𝐴) − 𝑏) + 𝑁))
8466zcnd 12748 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℂ)
8510recnd 11318 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℂ)
8684, 85, 82subadd23d 11669 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) + 𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8783, 86eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8879, 87breqtrrd 5194 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
8988adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
9089olcd 873 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁)))
91 id 22 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑎 = ((2 · 𝐴) − 𝑏))
92 eqidd 2741 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑁 = 𝑁)
9391, 92acongeq12d 42936 . . . . 5 (𝑎 = ((2 · 𝐴) − 𝑏) → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))))
9493rspcev 3635 . . . 4 ((((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9571, 90, 94syl2anc 583 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9610, 12, 30, 95lecasei 11396 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
977, 96rexlimddv 3167 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076   class class class wbr 5166  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  2c2 12348  cz 12639  ...cfz 13567  cdvds 16302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-dvds 16303
This theorem is referenced by:  jm2.26  42959
  Copyright terms: Public domain W3C validator