Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Visualization version   GIF version

Theorem acongrep 42971
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem acongrep
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 2nn 12318 . . . 4 2 ∈ ℕ
2 simpl 482 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℕ)
3 nnmulcl 12269 . . . 4 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
41, 2, 3sylancr 587 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℕ)
5 simpr 484 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 congrep 42964 . . 3 (((2 · 𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
74, 5, 6syl2anc 584 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
8 elfzelz 13546 . . . . 5 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℤ)
98zred 12702 . . . 4 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℝ)
109ad2antrl 728 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℝ)
11 nnre 12252 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1211ad2antrr 726 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℝ)
13 elfzle1 13549 . . . . . . 7 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 0 ≤ 𝑏)
1413ad2antrl 728 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ≤ 𝑏)
1514anim1i 615 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (0 ≤ 𝑏𝑏𝐴))
168ad2antrl 728 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℤ)
17 0zd 12605 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ∈ ℤ)
18 nnz 12614 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1918ad2antrr 726 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℤ)
20 elfz 13535 . . . . . . 7 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2116, 17, 19, 20syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2221adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2315, 22mpbird 257 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → 𝑏 ∈ (0...𝐴))
24 simplrr 777 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (2 · 𝐴) ∥ (𝑏𝑁))
2524orcd 873 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁)))
26 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
27 eqidd 2737 . . . . . 6 (𝑎 = 𝑏𝑁 = 𝑁)
2826, 27acongeq12d 42970 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))))
2928rspcev 3606 . . . 4 ((𝑏 ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
3023, 25, 29syl2anc 584 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
31 simplll 774 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴 ∈ ℕ)
32 simplrl 776 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
33 simpr 484 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴𝑏)
3493ad2ant2 1134 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ ℝ)
35 2re 12319 . . . . . . . . . . 11 2 ∈ ℝ
36 remulcl 11219 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3735, 11, 36sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℝ)
38373ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℝ)
39 0zd 12605 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ∈ ℤ)
40 2z 12629 . . . . . . . . . . . . 13 2 ∈ ℤ
41 zmulcl 12646 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
4240, 18, 41sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℤ)
43423ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℤ)
44 simp2 1137 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
45 elfzm11 13617 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → (𝑏 ∈ (0...((2 · 𝐴) − 1)) ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴))))
4645biimpa 476 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1))) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4739, 43, 44, 46syl21anc 837 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4847simp3d 1144 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 < (2 · 𝐴))
4934, 38, 48ltled 11388 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ≤ (2 · 𝐴))
5038, 34subge0d 11832 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ↔ 𝑏 ≤ (2 · 𝐴)))
5149, 50mpbird 257 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ≤ ((2 · 𝐴) − 𝑏))
52113ad2ant1 1133 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴 ∈ ℝ)
53 nncn 12253 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
54 2times 12381 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
5554oveq1d 7425 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = ((𝐴 + 𝐴) − 𝐴))
56 pncan2 11494 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5756anidms 566 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5855, 57eqtrd 2771 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = 𝐴)
5953, 58syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2 · 𝐴) − 𝐴) = 𝐴)
60593ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) = 𝐴)
61 simp3 1138 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴𝑏)
6260, 61eqbrtrd 5146 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) ≤ 𝑏)
6338, 52, 34, 62subled 11845 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ≤ 𝐴)
6451, 63jca 511 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6531, 32, 33, 64syl3anc 1373 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6640, 19, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℤ)
6766, 16zsubcld 12707 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℤ)
68 elfz 13535 . . . . . . 7 ((((2 · 𝐴) − 𝑏) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
6967, 17, 19, 68syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7069adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7165, 70mpbird 257 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ∈ (0...𝐴))
72 simplr 768 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℤ)
73 simprr 772 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑏𝑁))
74 congsym 42959 . . . . . . . . 9 ((((2 · 𝐴) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7566, 16, 72, 73, 74syl22anc 838 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7672, 16zsubcld 12707 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑁𝑏) ∈ ℤ)
77 dvdsadd 16326 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝑁𝑏) ∈ ℤ) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7866, 76, 77syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7975, 78mpbid 232 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏)))
8067zcnd 12703 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℂ)
81 zcn 12598 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8281ad2antlr 727 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℂ)
8380, 82subnegd 11606 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = (((2 · 𝐴) − 𝑏) + 𝑁))
8466zcnd 12703 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℂ)
8510recnd 11268 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℂ)
8684, 85, 82subadd23d 11621 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) + 𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8783, 86eqtrd 2771 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8879, 87breqtrrd 5152 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
8988adantr 480 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
9089olcd 874 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁)))
91 id 22 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑎 = ((2 · 𝐴) − 𝑏))
92 eqidd 2737 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑁 = 𝑁)
9391, 92acongeq12d 42970 . . . . 5 (𝑎 = ((2 · 𝐴) − 𝑏) → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))))
9493rspcev 3606 . . . 4 ((((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9571, 90, 94syl2anc 584 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9610, 12, 30, 95lecasei 11346 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
977, 96rexlimddv 3148 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3061   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471  -cneg 11472  cn 12245  2c2 12300  cz 12593  ...cfz 13529  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-dvds 16278
This theorem is referenced by:  jm2.26  42993
  Copyright terms: Public domain W3C validator