Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Visualization version   GIF version

Theorem acongrep 40802
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem acongrep
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 2nn 12046 . . . 4 2 ∈ ℕ
2 simpl 483 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℕ)
3 nnmulcl 11997 . . . 4 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
41, 2, 3sylancr 587 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℕ)
5 simpr 485 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 congrep 40795 . . 3 (((2 · 𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
74, 5, 6syl2anc 584 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
8 elfzelz 13256 . . . . 5 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℤ)
98zred 12426 . . . 4 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℝ)
109ad2antrl 725 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℝ)
11 nnre 11980 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1211ad2antrr 723 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℝ)
13 elfzle1 13259 . . . . . . 7 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 0 ≤ 𝑏)
1413ad2antrl 725 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ≤ 𝑏)
1514anim1i 615 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (0 ≤ 𝑏𝑏𝐴))
168ad2antrl 725 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℤ)
17 0zd 12331 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ∈ ℤ)
18 nnz 12342 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1918ad2antrr 723 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℤ)
20 elfz 13245 . . . . . . 7 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2116, 17, 19, 20syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2221adantr 481 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2315, 22mpbird 256 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → 𝑏 ∈ (0...𝐴))
24 simplrr 775 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (2 · 𝐴) ∥ (𝑏𝑁))
2524orcd 870 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁)))
26 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
27 eqidd 2739 . . . . . 6 (𝑎 = 𝑏𝑁 = 𝑁)
2826, 27acongeq12d 40801 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))))
2928rspcev 3561 . . . 4 ((𝑏 ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
3023, 25, 29syl2anc 584 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
31 simplll 772 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴 ∈ ℕ)
32 simplrl 774 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
33 simpr 485 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴𝑏)
3493ad2ant2 1133 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ ℝ)
35 2re 12047 . . . . . . . . . . 11 2 ∈ ℝ
36 remulcl 10956 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3735, 11, 36sylancr 587 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℝ)
38373ad2ant1 1132 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℝ)
39 0zd 12331 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ∈ ℤ)
40 2z 12352 . . . . . . . . . . . . 13 2 ∈ ℤ
41 zmulcl 12369 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
4240, 18, 41sylancr 587 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℤ)
43423ad2ant1 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℤ)
44 simp2 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
45 elfzm11 13327 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → (𝑏 ∈ (0...((2 · 𝐴) − 1)) ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴))))
4645biimpa 477 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1))) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4739, 43, 44, 46syl21anc 835 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4847simp3d 1143 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 < (2 · 𝐴))
4934, 38, 48ltled 11123 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ≤ (2 · 𝐴))
5038, 34subge0d 11565 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ↔ 𝑏 ≤ (2 · 𝐴)))
5149, 50mpbird 256 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ≤ ((2 · 𝐴) − 𝑏))
52113ad2ant1 1132 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴 ∈ ℝ)
53 nncn 11981 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
54 2times 12109 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
5554oveq1d 7290 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = ((𝐴 + 𝐴) − 𝐴))
56 pncan2 11228 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5756anidms 567 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5855, 57eqtrd 2778 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = 𝐴)
5953, 58syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2 · 𝐴) − 𝐴) = 𝐴)
60593ad2ant1 1132 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) = 𝐴)
61 simp3 1137 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴𝑏)
6260, 61eqbrtrd 5096 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) ≤ 𝑏)
6338, 52, 34, 62subled 11578 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ≤ 𝐴)
6451, 63jca 512 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6531, 32, 33, 64syl3anc 1370 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6640, 19, 41sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℤ)
6766, 16zsubcld 12431 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℤ)
68 elfz 13245 . . . . . . 7 ((((2 · 𝐴) − 𝑏) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
6967, 17, 19, 68syl3anc 1370 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7069adantr 481 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7165, 70mpbird 256 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ∈ (0...𝐴))
72 simplr 766 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℤ)
73 simprr 770 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑏𝑁))
74 congsym 40790 . . . . . . . . 9 ((((2 · 𝐴) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7566, 16, 72, 73, 74syl22anc 836 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7672, 16zsubcld 12431 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑁𝑏) ∈ ℤ)
77 dvdsadd 16011 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝑁𝑏) ∈ ℤ) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7866, 76, 77syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7975, 78mpbid 231 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏)))
8067zcnd 12427 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℂ)
81 zcn 12324 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8281ad2antlr 724 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℂ)
8380, 82subnegd 11339 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = (((2 · 𝐴) − 𝑏) + 𝑁))
8466zcnd 12427 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℂ)
8510recnd 11003 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℂ)
8684, 85, 82subadd23d 11354 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) + 𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8783, 86eqtrd 2778 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8879, 87breqtrrd 5102 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
8988adantr 481 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
9089olcd 871 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁)))
91 id 22 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑎 = ((2 · 𝐴) − 𝑏))
92 eqidd 2739 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑁 = 𝑁)
9391, 92acongeq12d 40801 . . . . 5 (𝑎 = ((2 · 𝐴) − 𝑏) → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))))
9493rspcev 3561 . . . 4 ((((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9571, 90, 94syl2anc 584 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9610, 12, 30, 95lecasei 11081 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
977, 96rexlimddv 3220 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876   < clt 11009  cle 11010  cmin 11205  -cneg 11206  cn 11973  2c2 12028  cz 12319  ...cfz 13239  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590  df-dvds 15964
This theorem is referenced by:  jm2.26  40824
  Copyright terms: Public domain W3C validator