Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  acongrep Structured version   Visualization version   GIF version

Theorem acongrep 38389
Description: Every integer is alternating-congruent to some number in the first half of the fundamental domain. (Contributed by Stefan O'Rear, 2-Oct-2014.)
Assertion
Ref Expression
acongrep ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Distinct variable groups:   𝐴,𝑎   𝑁,𝑎

Proof of Theorem acongrep
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 2nn 11423 . . . 4 2 ∈ ℕ
2 simpl 476 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ ℕ)
3 nnmulcl 11374 . . . 4 ((2 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (2 · 𝐴) ∈ ℕ)
41, 2, 3sylancr 583 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (2 · 𝐴) ∈ ℕ)
5 simpr 479 . . 3 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
6 congrep 38382 . . 3 (((2 · 𝐴) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
74, 5, 6syl2anc 581 . 2 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑏 ∈ (0...((2 · 𝐴) − 1))(2 · 𝐴) ∥ (𝑏𝑁))
8 elfzelz 12634 . . . . 5 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℤ)
98zred 11809 . . . 4 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 𝑏 ∈ ℝ)
109ad2antrl 721 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℝ)
11 nnre 11357 . . . 4 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
1211ad2antrr 719 . . 3 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℝ)
13 elfzle1 12636 . . . . . . 7 (𝑏 ∈ (0...((2 · 𝐴) − 1)) → 0 ≤ 𝑏)
1413ad2antrl 721 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ≤ 𝑏)
1514anim1i 610 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (0 ≤ 𝑏𝑏𝐴))
168ad2antrl 721 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℤ)
17 0zd 11715 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 0 ∈ ℤ)
18 nnz 11726 . . . . . . . 8 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1918ad2antrr 719 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝐴 ∈ ℤ)
20 elfz 12624 . . . . . . 7 ((𝑏 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2116, 17, 19, 20syl3anc 1496 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2221adantr 474 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (𝑏 ∈ (0...𝐴) ↔ (0 ≤ 𝑏𝑏𝐴)))
2315, 22mpbird 249 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → 𝑏 ∈ (0...𝐴))
24 simplrr 798 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → (2 · 𝐴) ∥ (𝑏𝑁))
2524orcd 906 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁)))
26 id 22 . . . . . 6 (𝑎 = 𝑏𝑎 = 𝑏)
27 eqidd 2825 . . . . . 6 (𝑎 = 𝑏𝑁 = 𝑁)
2826, 27acongeq12d 38388 . . . . 5 (𝑎 = 𝑏 → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))))
2928rspcev 3525 . . . 4 ((𝑏 ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (𝑏𝑁) ∨ (2 · 𝐴) ∥ (𝑏 − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
3023, 25, 29syl2anc 581 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝑏𝐴) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
31 simplll 793 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴 ∈ ℕ)
32 simplrl 797 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
33 simpr 479 . . . . . 6 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → 𝐴𝑏)
3493ad2ant2 1170 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ ℝ)
35 2re 11424 . . . . . . . . . . 11 2 ∈ ℝ
36 remulcl 10336 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3735, 11, 36sylancr 583 . . . . . . . . . 10 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℝ)
38373ad2ant1 1169 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℝ)
39 0zd 11715 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ∈ ℤ)
40 2z 11736 . . . . . . . . . . . . 13 2 ∈ ℤ
41 zmulcl 11753 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (2 · 𝐴) ∈ ℤ)
4240, 18, 41sylancr 583 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → (2 · 𝐴) ∈ ℤ)
43423ad2ant1 1169 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (2 · 𝐴) ∈ ℤ)
44 simp2 1173 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ∈ (0...((2 · 𝐴) − 1)))
45 elfzm11 12704 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) → (𝑏 ∈ (0...((2 · 𝐴) − 1)) ↔ (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴))))
4645biimpa 470 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ (2 · 𝐴) ∈ ℤ) ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1))) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4739, 43, 44, 46syl21anc 873 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (𝑏 ∈ ℤ ∧ 0 ≤ 𝑏𝑏 < (2 · 𝐴)))
4847simp3d 1180 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 < (2 · 𝐴))
4934, 38, 48ltled 10503 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝑏 ≤ (2 · 𝐴))
5038, 34subge0d 10941 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ↔ 𝑏 ≤ (2 · 𝐴)))
5149, 50mpbird 249 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 0 ≤ ((2 · 𝐴) − 𝑏))
52113ad2ant1 1169 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴 ∈ ℝ)
53 nncn 11358 . . . . . . . . . . 11 (𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
54 2times 11493 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
5554oveq1d 6919 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = ((𝐴 + 𝐴) − 𝐴))
56 pncan2 10607 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5756anidms 564 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((𝐴 + 𝐴) − 𝐴) = 𝐴)
5855, 57eqtrd 2860 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((2 · 𝐴) − 𝐴) = 𝐴)
5953, 58syl 17 . . . . . . . . . 10 (𝐴 ∈ ℕ → ((2 · 𝐴) − 𝐴) = 𝐴)
60593ad2ant1 1169 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) = 𝐴)
61 simp3 1174 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → 𝐴𝑏)
6260, 61eqbrtrd 4894 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝐴) ≤ 𝑏)
6338, 52, 34, 62subled 10954 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ≤ 𝐴)
6451, 63jca 509 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6531, 32, 33, 64syl3anc 1496 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴))
6640, 19, 41sylancr 583 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℤ)
6766, 16zsubcld 11814 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℤ)
68 elfz 12624 . . . . . . 7 ((((2 · 𝐴) − 𝑏) ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
6967, 17, 19, 68syl3anc 1496 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7069adantr 474 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ↔ (0 ≤ ((2 · 𝐴) − 𝑏) ∧ ((2 · 𝐴) − 𝑏) ≤ 𝐴)))
7165, 70mpbird 249 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) − 𝑏) ∈ (0...𝐴))
72 simplr 787 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℤ)
73 simprr 791 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑏𝑁))
74 congsym 38377 . . . . . . . . 9 ((((2 · 𝐴) ∈ ℤ ∧ 𝑏 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7566, 16, 72, 73, 74syl22anc 874 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (𝑁𝑏))
7672, 16zsubcld 11814 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (𝑁𝑏) ∈ ℤ)
77 dvdsadd 15400 . . . . . . . . 9 (((2 · 𝐴) ∈ ℤ ∧ (𝑁𝑏) ∈ ℤ) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7866, 76, 77syl2anc 581 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) ∥ (𝑁𝑏) ↔ (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏))))
7975, 78mpbid 224 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ ((2 · 𝐴) + (𝑁𝑏)))
8067zcnd 11810 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ((2 · 𝐴) − 𝑏) ∈ ℂ)
81 zcn 11708 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
8281ad2antlr 720 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑁 ∈ ℂ)
8380, 82subnegd 10719 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = (((2 · 𝐴) − 𝑏) + 𝑁))
8466zcnd 11810 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∈ ℂ)
8510recnd 10384 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → 𝑏 ∈ ℂ)
8684, 85, 82subadd23d 10734 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) + 𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8783, 86eqtrd 2860 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (((2 · 𝐴) − 𝑏) − -𝑁) = ((2 · 𝐴) + (𝑁𝑏)))
8879, 87breqtrrd 4900 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
8988adantr 474 . . . . 5 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))
9089olcd 907 . . . 4 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁)))
91 id 22 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑎 = ((2 · 𝐴) − 𝑏))
92 eqidd 2825 . . . . . 6 (𝑎 = ((2 · 𝐴) − 𝑏) → 𝑁 = 𝑁)
9391, 92acongeq12d 38388 . . . . 5 (𝑎 = ((2 · 𝐴) − 𝑏) → (((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)) ↔ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))))
9493rspcev 3525 . . . 4 ((((2 · 𝐴) − 𝑏) ∈ (0...𝐴) ∧ ((2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − 𝑁) ∨ (2 · 𝐴) ∥ (((2 · 𝐴) − 𝑏) − -𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9571, 90, 94syl2anc 581 . . 3 ((((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) ∧ 𝐴𝑏) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
9610, 12, 30, 95lecasei 10461 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) ∧ (𝑏 ∈ (0...((2 · 𝐴) − 1)) ∧ (2 · 𝐴) ∥ (𝑏𝑁))) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
977, 96rexlimddv 3244 1 ((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ (0...𝐴)((2 · 𝐴) ∥ (𝑎𝑁) ∨ (2 · 𝐴) ∥ (𝑎 − -𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 880  w3a 1113   = wceq 1658  wcel 2166  wrex 3117   class class class wbr 4872  (class class class)co 6904  cc 10249  cr 10250  0cc0 10251  1c1 10252   + caddc 10254   · cmul 10256   < clt 10390  cle 10391  cmin 10584  -cneg 10585  cn 11349  2c2 11405  cz 11703  ...cfz 12618  cdvds 15356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-sup 8616  df-inf 8617  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-n0 11618  df-z 11704  df-uz 11968  df-rp 12112  df-fz 12619  df-fl 12887  df-mod 12963  df-dvds 15357
This theorem is referenced by:  jm2.26  38411
  Copyright terms: Public domain W3C validator