Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmafv2rnb Structured version   Visualization version   GIF version

Theorem dmafv2rnb 47217
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function, iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dmafv2rnb (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))

Proof of Theorem dmafv2rnb
StepHypRef Expression
1 iba 527 . 2 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2 df-dfat 47107 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 dfatafv2rnb 47215 . . 3 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3bitr3i 277 . 2 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐹''''𝐴) ∈ ran 𝐹)
51, 4bitrdi 287 1 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  {csn 4579  dom cdm 5623  ran crn 5624  cres 5625  Fun wfun 6480   defAt wdfat 47104  ''''cafv2 47196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-iota 6442  df-fun 6488  df-dfat 47107  df-afv2 47197
This theorem is referenced by:  fundmafv2rnb  47218
  Copyright terms: Public domain W3C validator