Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmafv2rnb Structured version   Visualization version   GIF version

Theorem dmafv2rnb 47260
Description: The alternate function value at a class 𝐴 is defined, i.e., in the range of the function, iff 𝐴 is in the domain of the function. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
dmafv2rnb (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))

Proof of Theorem dmafv2rnb
StepHypRef Expression
1 iba 527 . 2 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2 df-dfat 47150 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
3 dfatafv2rnb 47258 . . 3 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3bitr3i 277 . 2 ((𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})) ↔ (𝐹''''𝐴) ∈ ran 𝐹)
51, 4bitrdi 287 1 (Fun (𝐹 ↾ {𝐴}) → (𝐴 ∈ dom 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  {csn 4571  dom cdm 5611  ran crn 5612  cres 5613  Fun wfun 6470   defAt wdfat 47147  ''''cafv2 47239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-dfat 47150  df-afv2 47240
This theorem is referenced by:  fundmafv2rnb  47261
  Copyright terms: Public domain W3C validator