Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0xorb Structured version   Visualization version   GIF version

Theorem afv2fv0xorb 42870
Description: If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.)
Assertion
Ref Expression
afv2fv0xorb (∅ ∈ ran 𝐹 → ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))

Proof of Theorem afv2fv0xorb
StepHypRef Expression
1 afv2fv0b 42869 . 2 ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
2 afv2orxorb 42831 . 2 (∅ ∈ ran 𝐹 → (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
31, 2syl5bb 275 1 (∅ ∈ ran 𝐹 → ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wo 833  wxo 1488   = wceq 1507  wcel 2050  wnel 3074  c0 4179  ran crn 5408  cfv 6188  ''''cafv2 42811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-xor 1489  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3418  df-sbc 3683  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-iota 6152  df-fun 6190  df-fv 6196  df-dfat 42722  df-afv2 42812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator