Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0xorb Structured version   Visualization version   GIF version

Theorem afv2fv0xorb 47391
Description: If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.)
Assertion
Ref Expression
afv2fv0xorb (∅ ∈ ran 𝐹 → ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))

Proof of Theorem afv2fv0xorb
StepHypRef Expression
1 afv2fv0b 47390 . 2 ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
2 afv2orxorb 47352 . 2 (∅ ∈ ran 𝐹 → (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
31, 2bitrid 283 1 (∅ ∈ ran 𝐹 → ((𝐹𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wo 847  wxo 1512   = wceq 1541  wcel 2113  wnel 3033  c0 4282  ran crn 5620  cfv 6486  ''''cafv2 47332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6442  df-fun 6488  df-fv 6494  df-dfat 47243  df-afv2 47333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator