| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0xorb | Structured version Visualization version GIF version | ||
| Description: If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2fv0xorb | ⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afv2fv0b 47267 | . 2 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | |
| 2 | afv2orxorb 47229 | . 2 ⊢ (∅ ∈ ran 𝐹 → (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | |
| 3 | 1, 2 | bitrid 283 | 1 ⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∨ wo 847 ⊻ wxo 1511 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 ∅c0 4296 ran crn 5639 ‘cfv 6511 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |