Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0xorb | Structured version Visualization version GIF version |
Description: If a set is in the range of a function, the function's value at an argument is the empty set if and only if the alternate function value at this argument is either the empty set or undefined. (Contributed by AV, 11-Sep-2022.) |
Ref | Expression |
---|---|
afv2fv0xorb | ⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv2fv0b 44275 | . 2 ⊢ ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) | |
2 | afv2orxorb 44237 | . 2 ⊢ (∅ ∈ ran 𝐹 → (((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) | |
3 | 1, 2 | syl5bb 286 | 1 ⊢ (∅ ∈ ran 𝐹 → ((𝐹‘𝐴) = ∅ ↔ ((𝐹''''𝐴) = ∅ ⊻ (𝐹''''𝐴) ∉ ran 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∨ wo 846 ⊻ wxo 1506 = wceq 1542 ∈ wcel 2113 ∉ wnel 3038 ∅c0 4209 ran crn 5520 ‘cfv 6333 ''''cafv2 44217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-xor 1507 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-iota 6291 df-fun 6335 df-fv 6341 df-dfat 44128 df-afv2 44218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |