Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2rnb Structured version   Visualization version   GIF version

Theorem dfatafv2rnb 46520
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2rnb (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem dfatafv2rnb
StepHypRef Expression
1 funressndmafv2rn 46516 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
2 ndfatafv2nrn 46514 . . . 4 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
3 df-nel 3042 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3sylib 217 . . 3 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹)
54con4i 114 . 2 ((𝐹''''𝐴) ∈ ran 𝐹𝐹 defAt 𝐴)
61, 5impbii 208 1 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2099  wnel 3041  ran crn 5673   defAt wdfat 46409  ''''cafv2 46501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-iota 6494  df-fun 6544  df-dfat 46412  df-afv2 46502
This theorem is referenced by:  dmafv2rnb  46522  afv2elrn  46524  tz6.12i-afv2  46536  afv2ndeffv0  46553  afv2rnfveq  46555
  Copyright terms: Public domain W3C validator