Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2rnb Structured version   Visualization version   GIF version

Theorem dfatafv2rnb 47239
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2rnb (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem dfatafv2rnb
StepHypRef Expression
1 funressndmafv2rn 47235 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
2 ndfatafv2nrn 47233 . . . 4 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
3 df-nel 3047 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3sylib 218 . . 3 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹)
54con4i 114 . 2 ((𝐹''''𝐴) ∈ ran 𝐹𝐹 defAt 𝐴)
61, 5impbii 209 1 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wnel 3046  ran crn 5686   defAt wdfat 47128  ''''cafv2 47220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-iota 6514  df-fun 6563  df-dfat 47131  df-afv2 47221
This theorem is referenced by:  dmafv2rnb  47241  afv2elrn  47243  tz6.12i-afv2  47255  afv2ndeffv0  47272  afv2rnfveq  47274
  Copyright terms: Public domain W3C validator