Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2rnb Structured version   Visualization version   GIF version

Theorem dfatafv2rnb 47389
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2rnb (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem dfatafv2rnb
StepHypRef Expression
1 funressndmafv2rn 47385 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
2 ndfatafv2nrn 47383 . . . 4 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
3 df-nel 3034 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3sylib 218 . . 3 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹)
54con4i 114 . 2 ((𝐹''''𝐴) ∈ ran 𝐹𝐹 defAt 𝐴)
61, 5impbii 209 1 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2113  wnel 3033  ran crn 5622   defAt wdfat 47278  ''''cafv2 47370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-dfat 47281  df-afv2 47371
This theorem is referenced by:  dmafv2rnb  47391  afv2elrn  47393  tz6.12i-afv2  47405  afv2ndeffv0  47422  afv2rnfveq  47424
  Copyright terms: Public domain W3C validator