![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatafv2rnb | Structured version Visualization version GIF version |
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.) |
Ref | Expression |
---|---|
dfatafv2rnb | ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funressndmafv2rn 47173 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹) | |
2 | ndfatafv2nrn 47171 | . . . 4 ⊢ (¬ 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹) | |
3 | df-nel 3045 | . . . 4 ⊢ ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹) | |
4 | 2, 3 | sylib 218 | . . 3 ⊢ (¬ 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹) |
5 | 4 | con4i 114 | . 2 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → 𝐹 defAt 𝐴) |
6 | 1, 5 | impbii 209 | 1 ⊢ (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2106 ∉ wnel 3044 ran crn 5690 defAt wdfat 47066 ''''cafv2 47158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-dfat 47069 df-afv2 47159 |
This theorem is referenced by: dmafv2rnb 47179 afv2elrn 47181 tz6.12i-afv2 47193 afv2ndeffv0 47210 afv2rnfveq 47212 |
Copyright terms: Public domain | W3C validator |