Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2rnb Structured version   Visualization version   GIF version

Theorem dfatafv2rnb 45533
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2rnb (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem dfatafv2rnb
StepHypRef Expression
1 funressndmafv2rn 45529 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
2 ndfatafv2nrn 45527 . . . 4 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
3 df-nel 3051 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3sylib 217 . . 3 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹)
54con4i 114 . 2 ((𝐹''''𝐴) ∈ ran 𝐹𝐹 defAt 𝐴)
61, 5impbii 208 1 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2107  wnel 3050  ran crn 5639   defAt wdfat 45422  ''''cafv2 45514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6453  df-fun 6503  df-dfat 45425  df-afv2 45515
This theorem is referenced by:  dmafv2rnb  45535  afv2elrn  45537  tz6.12i-afv2  45549  afv2ndeffv0  45566  afv2rnfveq  45568
  Copyright terms: Public domain W3C validator