Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatafv2rnb Structured version   Visualization version   GIF version

Theorem dfatafv2rnb 47256
Description: The alternate function value at a class 𝐴 is defined, i.e. in the range of the function, iff the function is defined at 𝐴. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
dfatafv2rnb (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)

Proof of Theorem dfatafv2rnb
StepHypRef Expression
1 funressndmafv2rn 47252 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) ∈ ran 𝐹)
2 ndfatafv2nrn 47250 . . . 4 𝐹 defAt 𝐴 → (𝐹''''𝐴) ∉ ran 𝐹)
3 df-nel 3037 . . . 4 ((𝐹''''𝐴) ∉ ran 𝐹 ↔ ¬ (𝐹''''𝐴) ∈ ran 𝐹)
42, 3sylib 218 . . 3 𝐹 defAt 𝐴 → ¬ (𝐹''''𝐴) ∈ ran 𝐹)
54con4i 114 . 2 ((𝐹''''𝐴) ∈ ran 𝐹𝐹 defAt 𝐴)
61, 5impbii 209 1 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2108  wnel 3036  ran crn 5655   defAt wdfat 47145  ''''cafv2 47237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-iota 6484  df-fun 6533  df-dfat 47148  df-afv2 47238
This theorem is referenced by:  dmafv2rnb  47258  afv2elrn  47260  tz6.12i-afv2  47272  afv2ndeffv0  47289  afv2rnfveq  47291
  Copyright terms: Public domain W3C validator