Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycllem Structured version   Visualization version   GIF version

Theorem umgr2cycllem 35112
Description: Lemma for umgr2cycl 35113. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypotheses
Ref Expression
umgr2cycllem.1 𝐹 = ⟨“𝐽𝐾”⟩
umgr2cycllem.2 𝐼 = (iEdg‘𝐺)
umgr2cycllem.3 (𝜑𝐺 ∈ UMGraph)
umgr2cycllem.4 (𝜑𝐽 ∈ dom 𝐼)
umgr2cycllem.5 (𝜑𝐽𝐾)
umgr2cycllem.6 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
Assertion
Ref Expression
umgr2cycllem (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐼(𝑝)   𝐽(𝑝)   𝐾(𝑝)

Proof of Theorem umgr2cycllem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgr2cycllem.3 . . 3 (𝜑𝐺 ∈ UMGraph)
2 umgruhgr 29067 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
3 umgr2cycllem.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29029 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
51, 2, 43syl 18 . . . 4 (𝜑 → Fun 𝐼)
6 umgr2cycllem.4 . . . 4 (𝜑𝐽 ∈ dom 𝐼)
73iedgedg 29013 . . . 4 ((Fun 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ∈ (Edg‘𝐺))
85, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐼𝐽) ∈ (Edg‘𝐺))
9 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
119, 10umgredg 29101 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐼𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
121, 8, 11syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
13 ax-5 1910 . . . . . . 7 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺))
14 alral 3058 . . . . . . 7 (∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
16 r19.29 3092 . . . . . 6 ((∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
1715, 16sylan 580 . . . . 5 ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
18 eqid 2729 . . . . . . . . . . . 12 ⟨“𝑎𝑏𝑎”⟩ = ⟨“𝑎𝑏𝑎”⟩
19 umgr2cycllem.1 . . . . . . . . . . . 12 𝐹 = ⟨“𝐽𝐾”⟩
20 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)))
21 simp3l 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝑎𝑏)
22 eqimss2 3997 . . . . . . . . . . . . . . 15 ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐽))
2322adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
24233ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
25 umgr2cycllem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
2625sseq2d 3970 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2722, 26imbitrid 244 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2827adantld 490 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2928adantld 490 . . . . . . . . . . . . . 14 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
30293impib 1116 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾))
3124, 30jca 511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
32 umgr2cycllem.5 . . . . . . . . . . . . 13 (𝜑𝐽𝐾)
33323ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐽𝐾)
3418, 19, 20, 21, 31, 9, 3, 332cycl2d 35111 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)
35343expib 1122 . . . . . . . . . 10 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
3635exp4c 432 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3736com23 86 . . . . . . . 8 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3837imp4a 422 . . . . . . 7 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)))
39 s3cli 14806 . . . . . . . . 9 ⟨“𝑎𝑏𝑎”⟩ ∈ Word V
40 breq2 5099 . . . . . . . . . 10 (𝑝 = ⟨“𝑎𝑏𝑎”⟩ → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
4140rspcev 3579 . . . . . . . . 9 ((⟨“𝑎𝑏𝑎”⟩ ∈ Word V ∧ 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
4239, 41mpan 690 . . . . . . . 8 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
43 rexex 3059 . . . . . . . 8 (∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4442, 43syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4538, 44syl8 76 . . . . . 6 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4645rexlimdv 3128 . . . . 5 (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4717, 46syl5 34 . . . 4 (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4847expd 415 . . 3 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4948rexlimdv 3128 . 2 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
5012, 49mpd 15 1 (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  {cpr 4581   class class class wbr 5095  dom cdm 5623  Fun wfun 6480  cfv 6486  Word cword 14438  ⟨“cs2 14766  ⟨“cs3 14767  Vtxcvtx 28959  iEdgciedg 28960  Edgcedg 29010  UHGraphcuhgr 29019  UMGraphcumgr 29044  Cyclesccycls 29748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-s1 14521  df-s2 14773  df-s3 14774  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-umgr 29046  df-wlks 29563  df-trls 29654  df-pths 29677  df-cycls 29750
This theorem is referenced by:  umgr2cycl  35113
  Copyright terms: Public domain W3C validator