Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycllem Structured version   Visualization version   GIF version

Theorem umgr2cycllem 35125
Description: Lemma for umgr2cycl 35126. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypotheses
Ref Expression
umgr2cycllem.1 𝐹 = ⟨“𝐽𝐾”⟩
umgr2cycllem.2 𝐼 = (iEdg‘𝐺)
umgr2cycllem.3 (𝜑𝐺 ∈ UMGraph)
umgr2cycllem.4 (𝜑𝐽 ∈ dom 𝐼)
umgr2cycllem.5 (𝜑𝐽𝐾)
umgr2cycllem.6 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
Assertion
Ref Expression
umgr2cycllem (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐼(𝑝)   𝐽(𝑝)   𝐾(𝑝)

Proof of Theorem umgr2cycllem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgr2cycllem.3 . . 3 (𝜑𝐺 ∈ UMGraph)
2 umgruhgr 29136 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
3 umgr2cycllem.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29098 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
51, 2, 43syl 18 . . . 4 (𝜑 → Fun 𝐼)
6 umgr2cycllem.4 . . . 4 (𝜑𝐽 ∈ dom 𝐼)
73iedgedg 29082 . . . 4 ((Fun 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ∈ (Edg‘𝐺))
85, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐼𝐽) ∈ (Edg‘𝐺))
9 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2735 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
119, 10umgredg 29170 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐼𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
121, 8, 11syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
13 ax-5 1908 . . . . . . 7 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺))
14 alral 3073 . . . . . . 7 (∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
16 r19.29 3112 . . . . . 6 ((∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
1715, 16sylan 580 . . . . 5 ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
18 eqid 2735 . . . . . . . . . . . 12 ⟨“𝑎𝑏𝑎”⟩ = ⟨“𝑎𝑏𝑎”⟩
19 umgr2cycllem.1 . . . . . . . . . . . 12 𝐹 = ⟨“𝐽𝐾”⟩
20 simp2 1136 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)))
21 simp3l 1200 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝑎𝑏)
22 eqimss2 4055 . . . . . . . . . . . . . . 15 ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐽))
2322adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
24233ad2ant3 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
25 umgr2cycllem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
2625sseq2d 4028 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2722, 26imbitrid 244 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2827adantld 490 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2928adantld 490 . . . . . . . . . . . . . 14 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
30293impib 1115 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾))
3124, 30jca 511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
32 umgr2cycllem.5 . . . . . . . . . . . . 13 (𝜑𝐽𝐾)
33323ad2ant1 1132 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐽𝐾)
3418, 19, 20, 21, 31, 9, 3, 332cycl2d 35124 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)
35343expib 1121 . . . . . . . . . 10 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
3635exp4c 432 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3736com23 86 . . . . . . . 8 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3837imp4a 422 . . . . . . 7 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)))
39 s3cli 14917 . . . . . . . . 9 ⟨“𝑎𝑏𝑎”⟩ ∈ Word V
40 breq2 5152 . . . . . . . . . 10 (𝑝 = ⟨“𝑎𝑏𝑎”⟩ → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
4140rspcev 3622 . . . . . . . . 9 ((⟨“𝑎𝑏𝑎”⟩ ∈ Word V ∧ 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
4239, 41mpan 690 . . . . . . . 8 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
43 rexex 3074 . . . . . . . 8 (∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4442, 43syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4538, 44syl8 76 . . . . . 6 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4645rexlimdv 3151 . . . . 5 (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4717, 46syl5 34 . . . 4 (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4847expd 415 . . 3 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4948rexlimdv 3151 . 2 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
5012, 49mpd 15 1 (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1535   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  Vcvv 3478  wss 3963  {cpr 4633   class class class wbr 5148  dom cdm 5689  Fun wfun 6557  cfv 6563  Word cword 14549  ⟨“cs2 14877  ⟨“cs3 14878  Vtxcvtx 29028  iEdgciedg 29029  Edgcedg 29079  UHGraphcuhgr 29088  UMGraphcumgr 29113  Cyclesccycls 29818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-edg 29080  df-uhgr 29090  df-upgr 29114  df-umgr 29115  df-wlks 29632  df-trls 29725  df-pths 29749  df-cycls 29820
This theorem is referenced by:  umgr2cycl  35126
  Copyright terms: Public domain W3C validator