Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycllem Structured version   Visualization version   GIF version

Theorem umgr2cycllem 32815
Description: Lemma for umgr2cycl 32816. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypotheses
Ref Expression
umgr2cycllem.1 𝐹 = ⟨“𝐽𝐾”⟩
umgr2cycllem.2 𝐼 = (iEdg‘𝐺)
umgr2cycllem.3 (𝜑𝐺 ∈ UMGraph)
umgr2cycllem.4 (𝜑𝐽 ∈ dom 𝐼)
umgr2cycllem.5 (𝜑𝐽𝐾)
umgr2cycllem.6 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
Assertion
Ref Expression
umgr2cycllem (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐼(𝑝)   𝐽(𝑝)   𝐾(𝑝)

Proof of Theorem umgr2cycllem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgr2cycllem.3 . . 3 (𝜑𝐺 ∈ UMGraph)
2 umgruhgr 27195 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
3 umgr2cycllem.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 27157 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
51, 2, 43syl 18 . . . 4 (𝜑 → Fun 𝐼)
6 umgr2cycllem.4 . . . 4 (𝜑𝐽 ∈ dom 𝐼)
73iedgedg 27141 . . . 4 ((Fun 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ∈ (Edg‘𝐺))
85, 6, 7syl2anc 587 . . 3 (𝜑 → (𝐼𝐽) ∈ (Edg‘𝐺))
9 eqid 2737 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2737 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
119, 10umgredg 27229 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐼𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
121, 8, 11syl2anc 587 . 2 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
13 ax-5 1918 . . . . . . 7 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺))
14 alral 3077 . . . . . . 7 (∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
16 r19.29 3176 . . . . . 6 ((∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
1715, 16sylan 583 . . . . 5 ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
18 eqid 2737 . . . . . . . . . . . 12 ⟨“𝑎𝑏𝑎”⟩ = ⟨“𝑎𝑏𝑎”⟩
19 umgr2cycllem.1 . . . . . . . . . . . 12 𝐹 = ⟨“𝐽𝐾”⟩
20 simp2 1139 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)))
21 simp3l 1203 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝑎𝑏)
22 eqimss2 3958 . . . . . . . . . . . . . . 15 ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐽))
2322adantl 485 . . . . . . . . . . . . . 14 ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
24233ad2ant3 1137 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
25 umgr2cycllem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
2625sseq2d 3933 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2722, 26syl5ib 247 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2827adantld 494 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2928adantld 494 . . . . . . . . . . . . . 14 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
30293impib 1118 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾))
3124, 30jca 515 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
32 umgr2cycllem.5 . . . . . . . . . . . . 13 (𝜑𝐽𝐾)
33323ad2ant1 1135 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐽𝐾)
3418, 19, 20, 21, 31, 9, 3, 332cycl2d 32814 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)
35343expib 1124 . . . . . . . . . 10 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
3635exp4c 436 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3736com23 86 . . . . . . . 8 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3837imp4a 426 . . . . . . 7 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)))
39 s3cli 14446 . . . . . . . . 9 ⟨“𝑎𝑏𝑎”⟩ ∈ Word V
40 breq2 5057 . . . . . . . . . 10 (𝑝 = ⟨“𝑎𝑏𝑎”⟩ → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
4140rspcev 3537 . . . . . . . . 9 ((⟨“𝑎𝑏𝑎”⟩ ∈ Word V ∧ 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
4239, 41mpan 690 . . . . . . . 8 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
43 rexex 3162 . . . . . . . 8 (∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4442, 43syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4538, 44syl8 76 . . . . . 6 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4645rexlimdv 3202 . . . . 5 (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4717, 46syl5 34 . . . 4 (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4847expd 419 . . 3 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4948rexlimdv 3202 . 2 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
5012, 49mpd 15 1 (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wal 1541   = wceq 1543  wex 1787  wcel 2110  wne 2940  wral 3061  wrex 3062  Vcvv 3408  wss 3866  {cpr 4543   class class class wbr 5053  dom cdm 5551  Fun wfun 6374  cfv 6380  Word cword 14069  ⟨“cs2 14406  ⟨“cs3 14407  Vtxcvtx 27087  iEdgciedg 27088  Edgcedg 27138  UHGraphcuhgr 27147  UMGraphcumgr 27172  Cyclesccycls 27872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-oadd 8206  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-dju 9517  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-concat 14126  df-s1 14153  df-s2 14413  df-s3 14414  df-edg 27139  df-uhgr 27149  df-upgr 27173  df-umgr 27174  df-wlks 27687  df-trls 27780  df-pths 27803  df-cycls 27874
This theorem is referenced by:  umgr2cycl  32816
  Copyright terms: Public domain W3C validator