Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycllem Structured version   Visualization version   GIF version

Theorem umgr2cycllem 35167
Description: Lemma for umgr2cycl 35168. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypotheses
Ref Expression
umgr2cycllem.1 𝐹 = ⟨“𝐽𝐾”⟩
umgr2cycllem.2 𝐼 = (iEdg‘𝐺)
umgr2cycllem.3 (𝜑𝐺 ∈ UMGraph)
umgr2cycllem.4 (𝜑𝐽 ∈ dom 𝐼)
umgr2cycllem.5 (𝜑𝐽𝐾)
umgr2cycllem.6 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
Assertion
Ref Expression
umgr2cycllem (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐼(𝑝)   𝐽(𝑝)   𝐾(𝑝)

Proof of Theorem umgr2cycllem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgr2cycllem.3 . . 3 (𝜑𝐺 ∈ UMGraph)
2 umgruhgr 29088 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
3 umgr2cycllem.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29050 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
51, 2, 43syl 18 . . . 4 (𝜑 → Fun 𝐼)
6 umgr2cycllem.4 . . . 4 (𝜑𝐽 ∈ dom 𝐼)
73iedgedg 29034 . . . 4 ((Fun 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ∈ (Edg‘𝐺))
85, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐼𝐽) ∈ (Edg‘𝐺))
9 eqid 2736 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2736 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
119, 10umgredg 29122 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐼𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
121, 8, 11syl2anc 584 . 2 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
13 ax-5 1910 . . . . . . 7 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺))
14 alral 3066 . . . . . . 7 (∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
16 r19.29 3102 . . . . . 6 ((∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
1715, 16sylan 580 . . . . 5 ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
18 eqid 2736 . . . . . . . . . . . 12 ⟨“𝑎𝑏𝑎”⟩ = ⟨“𝑎𝑏𝑎”⟩
19 umgr2cycllem.1 . . . . . . . . . . . 12 𝐹 = ⟨“𝐽𝐾”⟩
20 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)))
21 simp3l 1202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝑎𝑏)
22 eqimss2 4023 . . . . . . . . . . . . . . 15 ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐽))
2322adantl 481 . . . . . . . . . . . . . 14 ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
24233ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
25 umgr2cycllem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
2625sseq2d 3996 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2722, 26imbitrid 244 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2827adantld 490 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2928adantld 490 . . . . . . . . . . . . . 14 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
30293impib 1116 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾))
3124, 30jca 511 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
32 umgr2cycllem.5 . . . . . . . . . . . . 13 (𝜑𝐽𝐾)
33323ad2ant1 1133 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐽𝐾)
3418, 19, 20, 21, 31, 9, 3, 332cycl2d 35166 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)
35343expib 1122 . . . . . . . . . 10 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
3635exp4c 432 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3736com23 86 . . . . . . . 8 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3837imp4a 422 . . . . . . 7 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)))
39 s3cli 14905 . . . . . . . . 9 ⟨“𝑎𝑏𝑎”⟩ ∈ Word V
40 breq2 5128 . . . . . . . . . 10 (𝑝 = ⟨“𝑎𝑏𝑎”⟩ → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
4140rspcev 3606 . . . . . . . . 9 ((⟨“𝑎𝑏𝑎”⟩ ∈ Word V ∧ 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
4239, 41mpan 690 . . . . . . . 8 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
43 rexex 3067 . . . . . . . 8 (∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4442, 43syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4538, 44syl8 76 . . . . . 6 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4645rexlimdv 3140 . . . . 5 (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4717, 46syl5 34 . . . 4 (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4847expd 415 . . 3 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4948rexlimdv 3140 . 2 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
5012, 49mpd 15 1 (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  wss 3931  {cpr 4608   class class class wbr 5124  dom cdm 5659  Fun wfun 6530  cfv 6536  Word cword 14536  ⟨“cs2 14865  ⟨“cs3 14866  Vtxcvtx 28980  iEdgciedg 28981  Edgcedg 29031  UHGraphcuhgr 29040  UMGraphcumgr 29065  Cyclesccycls 29772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-umgr 29067  df-wlks 29584  df-trls 29677  df-pths 29701  df-cycls 29774
This theorem is referenced by:  umgr2cycl  35168
  Copyright terms: Public domain W3C validator