Step | Hyp | Ref
| Expression |
1 | | umgr2cycllem.3 |
. . 3
⊢ (𝜑 → 𝐺 ∈ UMGraph) |
2 | | umgruhgr 27474 |
. . . . 5
⊢ (𝐺 ∈ UMGraph → 𝐺 ∈
UHGraph) |
3 | | umgr2cycllem.2 |
. . . . . 6
⊢ 𝐼 = (iEdg‘𝐺) |
4 | 3 | uhgrfun 27436 |
. . . . 5
⊢ (𝐺 ∈ UHGraph → Fun 𝐼) |
5 | 1, 2, 4 | 3syl 18 |
. . . 4
⊢ (𝜑 → Fun 𝐼) |
6 | | umgr2cycllem.4 |
. . . 4
⊢ (𝜑 → 𝐽 ∈ dom 𝐼) |
7 | 3 | iedgedg 27420 |
. . . 4
⊢ ((Fun
𝐼 ∧ 𝐽 ∈ dom 𝐼) → (𝐼‘𝐽) ∈ (Edg‘𝐺)) |
8 | 5, 6, 7 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝐼‘𝐽) ∈ (Edg‘𝐺)) |
9 | | eqid 2738 |
. . . 4
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
10 | | eqid 2738 |
. . . 4
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
11 | 9, 10 | umgredg 27508 |
. . 3
⊢ ((𝐺 ∈ UMGraph ∧ (𝐼‘𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) |
12 | 1, 8, 11 | syl2anc 584 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) |
13 | | ax-5 1913 |
. . . . . . 7
⊢ (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺)) |
14 | | alral 3080 |
. . . . . . 7
⊢
(∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺)) |
15 | 13, 14 | syl 17 |
. . . . . 6
⊢ (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺)) |
16 | | r19.29 3184 |
. . . . . 6
⊢
((∀𝑏 ∈
(Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}))) |
17 | 15, 16 | sylan 580 |
. . . . 5
⊢ ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}))) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
〈“𝑎𝑏𝑎”〉 = 〈“𝑎𝑏𝑎”〉 |
19 | | umgr2cycllem.1 |
. . . . . . . . . . . 12
⊢ 𝐹 = 〈“𝐽𝐾”〉 |
20 | | simp2 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺))) |
21 | | simp3l 1200 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → 𝑎 ≠ 𝑏) |
22 | | eqimss2 3978 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼‘𝐽)) |
23 | 22 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼‘𝐽)) |
24 | 23 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼‘𝐽)) |
25 | | umgr2cycllem.6 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝐼‘𝐽) = (𝐼‘𝐾)) |
26 | 25 | sseq2d 3953 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼‘𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼‘𝐾))) |
27 | 22, 26 | syl5ib 243 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ((𝐼‘𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼‘𝐾))) |
28 | 27 | adantld 491 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼‘𝐾))) |
29 | 28 | adantld 491 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼‘𝐾))) |
30 | 29 | 3impib 1115 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼‘𝐾)) |
31 | 24, 30 | jca 512 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼‘𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼‘𝐾))) |
32 | | umgr2cycllem.5 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐽 ≠ 𝐾) |
33 | 32 | 3ad2ant1 1132 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → 𝐽 ≠ 𝐾) |
34 | 18, 19, 20, 21, 31, 9, 3, 33 | 2cycl2d 33101 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉) |
35 | 34 | 3expib 1121 |
. . . . . . . . . 10
⊢ (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉)) |
36 | 35 | exp4c 433 |
. . . . . . . . 9
⊢ (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉)))) |
37 | 36 | com23 86 |
. . . . . . . 8
⊢ (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉)))) |
38 | 37 | imp4a 423 |
. . . . . . 7
⊢ (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉))) |
39 | | s3cli 14594 |
. . . . . . . . 9
⊢
〈“𝑎𝑏𝑎”〉 ∈ Word V |
40 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑝 = 〈“𝑎𝑏𝑎”〉 → (𝐹(Cycles‘𝐺)𝑝 ↔ 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉)) |
41 | 40 | rspcev 3561 |
. . . . . . . . 9
⊢
((〈“𝑎𝑏𝑎”〉 ∈ Word V ∧ 𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝) |
42 | 39, 41 | mpan 687 |
. . . . . . . 8
⊢ (𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉 → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝) |
43 | | rexex 3171 |
. . . . . . . 8
⊢
(∃𝑝 ∈
Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) |
44 | 42, 43 | syl 17 |
. . . . . . 7
⊢ (𝐹(Cycles‘𝐺)〈“𝑎𝑏𝑎”〉 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) |
45 | 38, 44 | syl8 76 |
. . . . . 6
⊢ (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))) |
46 | 45 | rexlimdv 3212 |
. . . . 5
⊢ (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)) |
47 | 17, 46 | syl5 34 |
. . . 4
⊢ (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)) |
48 | 47 | expd 416 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))) |
49 | 48 | rexlimdv 3212 |
. 2
⊢ (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ≠ 𝑏 ∧ (𝐼‘𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)) |
50 | 12, 49 | mpd 15 |
1
⊢ (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) |