Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  umgr2cycllem Structured version   Visualization version   GIF version

Theorem umgr2cycllem 34968
Description: Lemma for umgr2cycl 34969. (Contributed by BTernaryTau, 17-Oct-2023.)
Hypotheses
Ref Expression
umgr2cycllem.1 𝐹 = ⟨“𝐽𝐾”⟩
umgr2cycllem.2 𝐼 = (iEdg‘𝐺)
umgr2cycllem.3 (𝜑𝐺 ∈ UMGraph)
umgr2cycllem.4 (𝜑𝐽 ∈ dom 𝐼)
umgr2cycllem.5 (𝜑𝐽𝐾)
umgr2cycllem.6 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
Assertion
Ref Expression
umgr2cycllem (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Distinct variable groups:   𝐹,𝑝   𝐺,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐼(𝑝)   𝐽(𝑝)   𝐾(𝑝)

Proof of Theorem umgr2cycllem
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgr2cycllem.3 . . 3 (𝜑𝐺 ∈ UMGraph)
2 umgruhgr 29040 . . . . 5 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
3 umgr2cycllem.2 . . . . . 6 𝐼 = (iEdg‘𝐺)
43uhgrfun 29002 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐼)
51, 2, 43syl 18 . . . 4 (𝜑 → Fun 𝐼)
6 umgr2cycllem.4 . . . 4 (𝜑𝐽 ∈ dom 𝐼)
73iedgedg 28986 . . . 4 ((Fun 𝐼𝐽 ∈ dom 𝐼) → (𝐼𝐽) ∈ (Edg‘𝐺))
85, 6, 7syl2anc 582 . . 3 (𝜑 → (𝐼𝐽) ∈ (Edg‘𝐺))
9 eqid 2726 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2726 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
119, 10umgredg 29074 . . 3 ((𝐺 ∈ UMGraph ∧ (𝐼𝐽) ∈ (Edg‘𝐺)) → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
121, 8, 11syl2anc 582 . 2 (𝜑 → ∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}))
13 ax-5 1906 . . . . . . 7 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 𝑎 ∈ (Vtx‘𝐺))
14 alral 3065 . . . . . . 7 (∀𝑏 𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
1513, 14syl 17 . . . . . 6 (𝑎 ∈ (Vtx‘𝐺) → ∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺))
16 r19.29 3104 . . . . . 6 ((∀𝑏 ∈ (Vtx‘𝐺)𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
1715, 16sylan 578 . . . . 5 ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})))
18 eqid 2726 . . . . . . . . . . . 12 ⟨“𝑎𝑏𝑎”⟩ = ⟨“𝑎𝑏𝑎”⟩
19 umgr2cycllem.1 . . . . . . . . . . . 12 𝐹 = ⟨“𝐽𝐾”⟩
20 simp2 1134 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)))
21 simp3l 1198 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝑎𝑏)
22 eqimss2 4039 . . . . . . . . . . . . . . 15 ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐽))
2322adantl 480 . . . . . . . . . . . . . 14 ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
24233ad2ant3 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐽))
25 umgr2cycllem.6 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐼𝐽) = (𝐼𝐾))
2625sseq2d 4012 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ↔ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2722, 26imbitrid 243 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐼𝐽) = {𝑎, 𝑏} → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2827adantld 489 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
2928adantld 489 . . . . . . . . . . . . . 14 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾)))
30293impib 1113 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → {𝑎, 𝑏} ⊆ (𝐼𝐾))
3124, 30jca 510 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ({𝑎, 𝑏} ⊆ (𝐼𝐽) ∧ {𝑎, 𝑏} ⊆ (𝐼𝐾)))
32 umgr2cycllem.5 . . . . . . . . . . . . 13 (𝜑𝐽𝐾)
33323ad2ant1 1130 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐽𝐾)
3418, 19, 20, 21, 31, 9, 3, 332cycl2d 34967 . . . . . . . . . . 11 ((𝜑 ∧ (𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)
35343expib 1119 . . . . . . . . . 10 (𝜑 → (((𝑎 ∈ (Vtx‘𝐺) ∧ 𝑏 ∈ (Vtx‘𝐺)) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
3635exp4c 431 . . . . . . . . 9 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3736com23 86 . . . . . . . 8 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → (𝑎 ∈ (Vtx‘𝐺) → ((𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))))
3837imp4a 421 . . . . . . 7 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩)))
39 s3cli 14890 . . . . . . . . 9 ⟨“𝑎𝑏𝑎”⟩ ∈ Word V
40 breq2 5157 . . . . . . . . . 10 (𝑝 = ⟨“𝑎𝑏𝑎”⟩ → (𝐹(Cycles‘𝐺)𝑝𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩))
4140rspcev 3608 . . . . . . . . 9 ((⟨“𝑎𝑏𝑎”⟩ ∈ Word V ∧ 𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩) → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
4239, 41mpan 688 . . . . . . . 8 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝)
43 rexex 3066 . . . . . . . 8 (∃𝑝 ∈ Word V𝐹(Cycles‘𝐺)𝑝 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4442, 43syl 17 . . . . . . 7 (𝐹(Cycles‘𝐺)⟨“𝑎𝑏𝑎”⟩ → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
4538, 44syl8 76 . . . . . 6 (𝜑 → (𝑏 ∈ (Vtx‘𝐺) → ((𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4645rexlimdv 3143 . . . . 5 (𝜑 → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎 ∈ (Vtx‘𝐺) ∧ (𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4717, 46syl5 34 . . . 4 (𝜑 → ((𝑎 ∈ (Vtx‘𝐺) ∧ ∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏})) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
4847expd 414 . . 3 (𝜑 → (𝑎 ∈ (Vtx‘𝐺) → (∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)))
4948rexlimdv 3143 . 2 (𝜑 → (∃𝑎 ∈ (Vtx‘𝐺)∃𝑏 ∈ (Vtx‘𝐺)(𝑎𝑏 ∧ (𝐼𝐽) = {𝑎, 𝑏}) → ∃𝑝 𝐹(Cycles‘𝐺)𝑝))
5012, 49mpd 15 1 (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wal 1532   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  wrex 3060  Vcvv 3462  wss 3947  {cpr 4635   class class class wbr 5153  dom cdm 5682  Fun wfun 6548  cfv 6554  Word cword 14522  ⟨“cs2 14850  ⟨“cs3 14851  Vtxcvtx 28932  iEdgciedg 28933  Edgcedg 28983  UHGraphcuhgr 28992  UMGraphcumgr 29017  Cyclesccycls 29722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-fzo 13682  df-hash 14348  df-word 14523  df-concat 14579  df-s1 14604  df-s2 14857  df-s3 14858  df-edg 28984  df-uhgr 28994  df-upgr 29018  df-umgr 29019  df-wlks 29536  df-trls 29629  df-pths 29653  df-cycls 29724
This theorem is referenced by:  umgr2cycl  34969
  Copyright terms: Public domain W3C validator