| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3053 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: rex0 4335 iun0 5038 canth 7359 orduninsuc 7838 wfrlem16OLD 8338 wofib 9559 cfsuc 10271 nominpos 12478 nnunb 12497 indstr 12932 eirr 16223 sqrt2irr 16267 vdwap0 16996 smndex1n0mnd 18890 smndex2dnrinv 18893 psgnunilem3 19477 bwth 23348 zfbas 23834 aaliou3lem9 26310 vma1 27128 muls01 28067 mulsrid 28068 onmulscl 28227 hatomistici 32343 esumrnmpt2 34099 fmlan0 35413 linedegen 36161 limsucncmpi 36463 elpadd0 39828 rexanuz2nf 45519 fourierdlem62 46197 etransc 46312 0nodd 48145 2nodd 48147 1neven 48213 |
| Copyright terms: Public domain | W3C validator |