![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3061 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3070 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-ral 3060 df-rex 3069 |
This theorem is referenced by: rex0 4366 iun0 5067 canth 7385 orduninsuc 7864 wfrlem16OLD 8363 wofib 9583 cfsuc 10295 nominpos 12501 nnunb 12520 indstr 12956 eirr 16238 sqrt2irr 16282 vdwap0 17010 smndex1n0mnd 18938 smndex2dnrinv 18941 psgnunilem3 19529 bwth 23434 zfbas 23920 aaliou3lem9 26407 vma1 27224 muls01 28153 mulsrid 28154 onmulscl 28302 hatomistici 32391 esumrnmpt2 34049 fmlan0 35376 linedegen 36125 limsucncmpi 36428 elpadd0 39792 rexanuz2nf 45443 fourierdlem62 46124 etransc 46239 0nodd 48014 2nodd 48016 1neven 48082 |
Copyright terms: Public domain | W3C validator |