MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrex Structured version   Visualization version   GIF version

Theorem nrex 3196
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1 (𝑥𝐴 → ¬ 𝜓)
Assertion
Ref Expression
nrex ¬ ∃𝑥𝐴 𝜓

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3 (𝑥𝐴 → ¬ 𝜓)
21rgen 3073 . 2 𝑥𝐴 ¬ 𝜓
3 ralnex 3163 . 2 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
42, 3mpbi 229 1 ¬ ∃𝑥𝐴 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  rex0  4288  iun0  4987  canth  7209  orduninsuc  7665  wfrlem16OLD  8126  wofib  9234  cfsuc  9944  nominpos  12140  nnunb  12159  indstr  12585  eirr  15842  sqrt2irr  15886  vdwap0  16605  smndex1n0mnd  18466  smndex2dnrinv  18469  psgnunilem3  19019  bwth  22469  zfbas  22955  aaliou3lem9  25415  vma1  26220  hatomistici  30625  esumrnmpt2  31936  fmlan0  33253  linedegen  34372  limsucncmpi  34561  elpadd0  37750  fourierdlem62  43599  etransc  43714  0nodd  45252  2nodd  45254  1neven  45378
  Copyright terms: Public domain W3C validator