| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3050 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3049 df-rex 3058 |
| This theorem is referenced by: rex0 4309 iun0 5012 canth 7306 orduninsuc 7779 wofib 9438 cfsuc 10155 nominpos 12365 nnunb 12384 indstr 12816 eirr 16116 sqrt2irr 16160 vdwap0 16890 smndex1n0mnd 18822 smndex2dnrinv 18825 psgnunilem3 19410 bwth 23326 zfbas 23812 aaliou3lem9 26286 vma1 27104 muls01 28052 mulsrid 28053 onmulscl 28212 hatomistici 32344 esumrnmpt2 34102 fmlan0 35456 linedegen 36208 limsucncmpi 36510 elpadd0 39928 rexanuz2nf 45614 fourierdlem62 46290 etransc 46405 cjnpoly 47013 0nodd 48294 2nodd 48296 1neven 48362 |
| Copyright terms: Public domain | W3C validator |