| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3047 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3056 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: rex0 4326 iun0 5029 canth 7344 orduninsuc 7822 wofib 9505 cfsuc 10217 nominpos 12426 nnunb 12445 indstr 12882 eirr 16180 sqrt2irr 16224 vdwap0 16954 smndex1n0mnd 18846 smndex2dnrinv 18849 psgnunilem3 19433 bwth 23304 zfbas 23790 aaliou3lem9 26265 vma1 27083 muls01 28022 mulsrid 28023 onmulscl 28182 hatomistici 32298 esumrnmpt2 34065 fmlan0 35385 linedegen 36138 limsucncmpi 36440 elpadd0 39810 rexanuz2nf 45495 fourierdlem62 46173 etransc 46288 0nodd 48162 2nodd 48164 1neven 48230 |
| Copyright terms: Public domain | W3C validator |