Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3073 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3163 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 229 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rex0 4288 iun0 4987 canth 7209 orduninsuc 7665 wfrlem16OLD 8126 wofib 9234 cfsuc 9944 nominpos 12140 nnunb 12159 indstr 12585 eirr 15842 sqrt2irr 15886 vdwap0 16605 smndex1n0mnd 18466 smndex2dnrinv 18469 psgnunilem3 19019 bwth 22469 zfbas 22955 aaliou3lem9 25415 vma1 26220 hatomistici 30625 esumrnmpt2 31936 fmlan0 33253 linedegen 34372 limsucncmpi 34561 elpadd0 37750 fourierdlem62 43599 etransc 43714 0nodd 45252 2nodd 45254 1neven 45378 |
Copyright terms: Public domain | W3C validator |