![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3069 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rex0 4383 iun0 5085 canth 7401 orduninsuc 7880 wfrlem16OLD 8380 wofib 9614 cfsuc 10326 nominpos 12530 nnunb 12549 indstr 12981 eirr 16253 sqrt2irr 16297 vdwap0 17023 smndex1n0mnd 18947 smndex2dnrinv 18950 psgnunilem3 19538 bwth 23439 zfbas 23925 aaliou3lem9 26410 vma1 27227 muls01 28156 mulsrid 28157 onmulscl 28305 hatomistici 32394 esumrnmpt2 34032 fmlan0 35359 linedegen 36107 limsucncmpi 36411 elpadd0 39766 rexanuz2nf 45408 fourierdlem62 46089 etransc 46204 0nodd 47893 2nodd 47895 1neven 47961 |
Copyright terms: Public domain | W3C validator |