![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3064 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 229 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-ral 3063 df-rex 3072 |
This theorem is referenced by: rex0 4308 iun0 5013 canth 7294 orduninsuc 7761 wfrlem16OLD 8229 wofib 9406 cfsuc 10118 nominpos 12315 nnunb 12334 indstr 12761 eirr 16013 sqrt2irr 16057 vdwap0 16774 smndex1n0mnd 18647 smndex2dnrinv 18650 psgnunilem3 19200 bwth 22666 zfbas 23152 aaliou3lem9 25615 vma1 26420 hatomistici 31011 esumrnmpt2 32332 fmlan0 33650 linedegen 34582 limsucncmpi 34771 elpadd0 38128 fourierdlem62 44097 etransc 44212 0nodd 45782 2nodd 45784 1neven 45908 |
Copyright terms: Public domain | W3C validator |