| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3058 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: rex0 4310 iun0 5010 canth 7300 orduninsuc 7773 wofib 9431 cfsuc 10145 nominpos 12355 nnunb 12374 indstr 12811 eirr 16111 sqrt2irr 16155 vdwap0 16885 smndex1n0mnd 18817 smndex2dnrinv 18820 psgnunilem3 19406 bwth 23323 zfbas 23809 aaliou3lem9 26283 vma1 27101 muls01 28049 mulsrid 28050 onmulscl 28209 hatomistici 32337 esumrnmpt2 34076 fmlan0 35423 linedegen 36176 limsucncmpi 36478 elpadd0 39847 rexanuz2nf 45529 fourierdlem62 46205 etransc 46320 cjnpoly 46919 0nodd 48200 2nodd 48202 1neven 48268 |
| Copyright terms: Public domain | W3C validator |