| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rex0 4323 iun0 5026 canth 7341 orduninsuc 7819 wofib 9498 cfsuc 10210 nominpos 12419 nnunb 12438 indstr 12875 eirr 16173 sqrt2irr 16217 vdwap0 16947 smndex1n0mnd 18839 smndex2dnrinv 18842 psgnunilem3 19426 bwth 23297 zfbas 23783 aaliou3lem9 26258 vma1 27076 muls01 28015 mulsrid 28016 onmulscl 28175 hatomistici 32291 esumrnmpt2 34058 fmlan0 35378 linedegen 36131 limsucncmpi 36433 elpadd0 39803 rexanuz2nf 45488 fourierdlem62 46166 etransc 46281 cjnpoly 46890 0nodd 48158 2nodd 48160 1neven 48226 |
| Copyright terms: Public domain | W3C validator |