MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nrex Structured version   Visualization version   GIF version

Theorem nrex 3058
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1 (𝑥𝐴 → ¬ 𝜓)
Assertion
Ref Expression
nrex ¬ ∃𝑥𝐴 𝜓

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3 (𝑥𝐴 → ¬ 𝜓)
21rgen 3047 . 2 𝑥𝐴 ¬ 𝜓
3 ralnex 3056 . 2 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
42, 3mpbi 230 1 ¬ ∃𝑥𝐴 𝜓
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3046  df-rex 3055
This theorem is referenced by:  rex0  4326  iun0  5029  canth  7344  orduninsuc  7822  wofib  9505  cfsuc  10217  nominpos  12426  nnunb  12445  indstr  12882  eirr  16180  sqrt2irr  16224  vdwap0  16954  smndex1n0mnd  18846  smndex2dnrinv  18849  psgnunilem3  19433  bwth  23304  zfbas  23790  aaliou3lem9  26265  vma1  27083  muls01  28022  mulsrid  28023  onmulscl  28182  hatomistici  32298  esumrnmpt2  34065  fmlan0  35385  linedegen  36138  limsucncmpi  36440  elpadd0  39810  rexanuz2nf  45495  fourierdlem62  46173  etransc  46288  0nodd  48162  2nodd  48164  1neven  48230
  Copyright terms: Public domain W3C validator