| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 3046 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 3055 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 230 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rex0 4313 iun0 5014 canth 7307 orduninsuc 7783 wofib 9456 cfsuc 10170 nominpos 12379 nnunb 12398 indstr 12835 eirr 16132 sqrt2irr 16176 vdwap0 16906 smndex1n0mnd 18804 smndex2dnrinv 18807 psgnunilem3 19393 bwth 23313 zfbas 23799 aaliou3lem9 26274 vma1 27092 muls01 28038 mulsrid 28039 onmulscl 28198 hatomistici 32324 esumrnmpt2 34034 fmlan0 35363 linedegen 36116 limsucncmpi 36418 elpadd0 39788 rexanuz2nf 45472 fourierdlem62 46150 etransc 46265 cjnpoly 46874 0nodd 48155 2nodd 48157 1neven 48223 |
| Copyright terms: Public domain | W3C validator |