![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nrex | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 3100 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 3185 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 222 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2051 ∀wral 3090 ∃wrex 3091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1744 df-ral 3095 df-rex 3096 |
This theorem is referenced by: rex0 4206 iun0 4856 canth 6940 orduninsuc 7380 wfrlem16 7780 wofib 8810 cfsuc 9483 nominpos 11690 nnunb 11709 indstr 12136 eirr 15424 sqrt2irr 15468 vdwap0 16174 psgnunilem3 18398 bwth 21737 zfbas 22223 aaliou3lem9 24657 vma1 25460 hatomistici 29935 esumrnmpt2 31003 linedegen 33165 limsucncmpi 33353 elpadd0 36430 fourierdlem62 41919 etransc 42034 0nodd 43480 2nodd 43482 1neven 43602 |
Copyright terms: Public domain | W3C validator |