Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > find | Structured version Visualization version GIF version |
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.) |
Ref | Expression |
---|---|
find.1 | ⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) |
Ref | Expression |
---|---|
find | ⊢ 𝐴 = ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | find.1 | . . 3 ⊢ (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) | |
2 | 1 | simp1i 1137 | . 2 ⊢ 𝐴 ⊆ ω |
3 | 3simpc 1148 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | |
4 | df-ral 3068 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) | |
5 | alral 3079 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴) → ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) | |
6 | 4, 5 | sylbi 216 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴 → ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) |
7 | 6 | anim2i 616 | . . . 4 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴))) |
8 | 1, 3, 7 | mp2b 10 | . . 3 ⊢ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) |
9 | peano5 7714 | . . 3 ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | |
10 | 8, 9 | ax-mp 5 | . 2 ⊢ ω ⊆ 𝐴 |
11 | 2, 10 | eqssi 3933 | 1 ⊢ 𝐴 = ω |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ∅c0 4253 suc csuc 6253 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-om 7688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |