MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  find Structured version   Visualization version   GIF version

Theorem find 7717
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.)
Hypothesis
Ref Expression
find.1 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
Assertion
Ref Expression
find 𝐴 = ω
Distinct variable group:   𝑥,𝐴

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
21simp1i 1137 . 2 𝐴 ⊆ ω
3 3simpc 1148 . . . 4 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
4 df-ral 3068 . . . . . 6 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
5 alral 3079 . . . . . 6 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
64, 5sylbi 216 . . . . 5 (∀𝑥𝐴 suc 𝑥𝐴 → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
76anim2i 616 . . . 4 ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
81, 3, 7mp2b 10 . . 3 (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
9 peano5 7714 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
108, 9ax-mp 5 . 2 ω ⊆ 𝐴
112, 10eqssi 3933 1 𝐴 = ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1537   = wceq 1539  wcel 2108  wral 3063  wss 3883  c0 4253  suc csuc 6253  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-om 7688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator