MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  find Structured version   Visualization version   GIF version

Theorem find 7918
Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.)
Hypothesis
Ref Expression
find.1 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
Assertion
Ref Expression
find 𝐴 = ω
Distinct variable group:   𝑥,𝐴

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
21simp1i 1138 . 2 𝐴 ⊆ ω
3 3simpc 1149 . . . 4 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
4 df-ral 3060 . . . . . 6 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
5 alral 3073 . . . . . 6 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
64, 5sylbi 217 . . . . 5 (∀𝑥𝐴 suc 𝑥𝐴 → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
76anim2i 617 . . . 4 ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
81, 3, 7mp2b 10 . . 3 (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
9 peano5 7916 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
108, 9ax-mp 5 . 2 ω ⊆ 𝐴
112, 10eqssi 4012 1 𝐴 = ω
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1535   = wceq 1537  wcel 2106  wral 3059  wss 3963  c0 4339  suc csuc 6388  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-om 7888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator