Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  find Structured version   Visualization version   GIF version

Theorem find 7603
 Description: The Principle of Finite Induction (mathematical induction). Corollary 7.31 of [TakeutiZaring] p. 43. The simpler hypothesis shown here was suggested in an email from "Colin" on 1-Oct-2001. The hypothesis states that 𝐴 is a set of natural numbers, zero belongs to 𝐴, and given any member of 𝐴 the member's successor also belongs to 𝐴. The conclusion is that every natural number is in 𝐴. (Contributed by NM, 22-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Wolf Lammen, 28-May-2024.)
Hypothesis
Ref Expression
find.1 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
Assertion
Ref Expression
find 𝐴 = ω
Distinct variable group:   𝑥,𝐴

Proof of Theorem find
StepHypRef Expression
1 find.1 . . 3 (𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴)
21simp1i 1136 . 2 𝐴 ⊆ ω
3 3simpc 1147 . . . 4 ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴))
4 df-ral 3138 . . . . . 6 (∀𝑥𝐴 suc 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴 → suc 𝑥𝐴))
5 alral 3149 . . . . . 6 (∀𝑥(𝑥𝐴 → suc 𝑥𝐴) → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
64, 5sylbi 220 . . . . 5 (∀𝑥𝐴 suc 𝑥𝐴 → ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
76anim2i 619 . . . 4 ((∅ ∈ 𝐴 ∧ ∀𝑥𝐴 suc 𝑥𝐴) → (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)))
81, 3, 7mp2b 10 . . 3 (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴))
9 peano5 7601 . . 3 ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
108, 9ax-mp 5 . 2 ω ⊆ 𝐴
112, 10eqssi 3969 1 𝐴 = ω
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084  ∀wal 1536   = wceq 1538   ∈ wcel 2115  ∀wral 3133   ⊆ wss 3919  ∅c0 4276  suc csuc 6182  ωcom 7576 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318  ax-un 7457 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-br 5054  df-opab 5116  df-tr 5160  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-om 7577 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator